

King Saud University
Mathematics Department | ACTU461
Exercise's Lecture (7)
Rahaf Alhodaif

PUT OPTION

A put option is a financial contract which gives the owner the right, but not the obligation, to sell a specified amount of a given security at a specified price at a specified time.

TO CLARIFY THE CONCEPT OF PUT OPTIONS :

Suppose Sara own a truck cost 40K dollars she is afraid her truck may be damaged or stolen so she entered a put option (Zero deductible insurance policy) from ABC insurance company on her truck for the full amount ($40 \mathrm{~K}=$ Strike price) with a premium of $\mathbf{5 0 0 0}$ for one year.

Scenario 1: her truck is not damaged after a year. So, she will get nothing from the insurance company but she has been happy all the year for the protection. (Not Exercised)

Scenario 2: her truck has an accident and the repairing cost is 10k, her truck price now is 30 K so ABC pay back 10K to Sara. (K-St)

Scenario 3: her truck is stolen $(\mathrm{St}=0)$ so ABC has to pay back 40 K to sara. ($\mathrm{K}-\mathrm{St}$)
As the Call options Put options could exercised on Stocks, Assets..

Since, A put-option is a zerosum game. The seller of a put option or the option put writer has a payoff equals the opposite of the holder's payoff. So, The sum of the two payoffs is zero

The put option holder's profit per unit:

$$
\max \left(K-S_{t}, 0\right)-P(K, T)(1+i)^{T}
$$

$$
\begin{cases}K-\boldsymbol{S}_{t}-P(K, T)(1+i)^{T} & \text { if } S_{T}<K \\ -P(K, T)(1+i)^{T} & \text { if } S_{T} \geq K\end{cases}
$$

1-No Arbitrage

$\max \left((1+i)^{-T} K-S_{0}, 0\right)<\operatorname{Put}(K, T)<K(1+i)^{-T}$

Arbitrage could exist in two main cases:

CASE I

$$
\begin{gathered}
\left((1+i)^{-T} K-S_{0}\right)>\operatorname{Put}(K, T) \\
(1+i)^{-T} K>\operatorname{Put}(K, T)+S_{0} \\
\boldsymbol{K}>\left(\boldsymbol{P u t}(\boldsymbol{K}, \boldsymbol{T})+\boldsymbol{S}_{\mathbf{0}}\right)(\mathbf{1}+\boldsymbol{i})^{\boldsymbol{T}}
\end{gathered}
$$

CASE II

$$
\operatorname{Put}(K, T)>(1+i)^{-T} K
$$

$\operatorname{Put}(K, T)(1+i)^{T}>K$

2-No Arbitrage

$$
\max \left((1+i)^{-T}\left(K-F_{0, T}\right), 0\right) \leq \operatorname{Put}(K, T) \leq K(1+i)^{-T}
$$

Arbitrage could exist in two main cases:
Contracts could appear as prepaid forward contracts. $\left[P V\left(\boldsymbol{F}_{0, T}\right)=\boldsymbol{F}_{0 . T}^{P}\right]$

CASE I

$(1+i)^{-T}\left(K-F_{0, T}\right)>\operatorname{Put}(K, T)$
$\left(K-F_{0, T}\right)>\operatorname{Put}(K, T)(1+i)^{-T}$
$K>P u t(K, T)(1+i)^{T}+F_{0, T}$

CASE II

$$
\operatorname{Put}(K, T)>K(1+i)^{-T}
$$

$\operatorname{Put}(K, T) K(1+i)^{T}>K$

3-No Arbitrage

$\operatorname{Put}\left(K_{1}, T\right) \leq \operatorname{Put}\left(K_{2}, T\right) \leq \operatorname{Put}\left(K_{1}, T\right)+\left(K_{2}-K_{1}\right) e^{-r T}$

Arbitrage could exist in two main cases:

CASE I

CASE II

$$
\begin{aligned}
& \operatorname{Put}\left(K_{2}, T\right)>\operatorname{Put}\left(K_{1}, T\right)+\left(K_{2}-K_{1}\right) e^{-r T} \\
& \operatorname{Put}\left(K_{2}, T\right)-\operatorname{Put}\left(K_{1}, T\right)>\left(K_{2}-K_{1}\right) e^{-r T}
\end{aligned}
$$

$$
\left(\operatorname{Put}\left(K_{2}, T\right)-\operatorname{Put}\left(K_{1}, T\right)\right) e^{r T}>\left(K_{2}-K_{1}\right)
$$

The purchased of the put option is:

Out-the-money
$S_{t}>\mathrm{K}$

At-the-money

$$
S_{T}=\mathrm{K}
$$

In-the-money

$$
S_{T}<\mathrm{K}
$$

An investor purchased Option A and Option B for a certain stock today. With strike prices 70 and 80 , respectively. Both options are European one year put options.
Determine which statements is true about the moneyness of these options, based on a particular stock price.
A) If Option A is in-the-money, then Option B is in-the-money.
B) If Option A is at-the-money, then Option B is out-of-the-money.
C) If Option A is in-the-money, then Option B is out-of-the-money.
D) If Option A is out-of-the-money, then Option B is in-the-money.
E) If Option A is out-of-the-money, then Option B is out-of-the-money.

ACTEX VOL. I | Q 13

The current price of a forward of corn is $\$ 3.3$ per bushel. The annual effective interest rate is 7.5%. The price of a one-year European 3.5-strike put option for corn is $\$ 0.18$ per bushel. Find an arbitrage strategy and its minimum profit per bushel.

Example 5 The current price of XYZ stock is 160 per share. The annual effective interest rate is 7%. The price of a one-year European 200-strike put option for XYZ stock is $\$ 190$ per share. Find an arbitrage strategy and the minimum profit per share.

FM SLIDES| Q 5

The price of a one-year European 3.5-strike put option for corn is $\$ 0.18$ per bushel. The price of a one-year European 3.75-strike put option for corn is $\$ 0.15$ per bushel. The annual effective interest rate is 7.5%. Find an arbitrage strategy and it minimum profit.

Consider two European put options on a stock, both with expiration date exactly two years from now. One put option has strike price $\$ 85$ and the other one $\$ 95$. The price of the 85-strike put is 8 . The price of the 95 -strike put option is 20 . The risk-free annual rate of interest compounded continuously is 5%. Find an arbitrage portfolio and its minimum profit

