Question: Convert from polar coordinates to Cartesian coordinates.

(1)
$$(1, \pi/4)$$
 (3) $(2, -2\pi/3)$

(2)
$$(2,\pi)$$
 (4, $3\pi/4$)

Solution:

(1) From the polar point $(1, \pi/4)$, we have r = 1 and $\theta = \frac{\pi}{4}$. Hence,

Therefore, in the Cartesian coordinates, the point $(1, \pi/4)$ is represented by $(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}})$.

- (2) From the polar point $(2, \pi)$, we have r = 2 and $\theta = \pi$. Hence,
 - $x = r \cos \theta = 2 \cos \pi = -2$, $y = r \sin \theta = 2 \sin \pi = 0$.

 $y = r \sin \theta = (1) \sin \frac{\pi}{4} = \frac{1}{\sqrt{2}}$

 $x = r \cos \theta = (1) \cos \frac{\pi}{4} = \frac{1}{\sqrt{2}},$

باستخدام الجدول في الأسفل

Hence, the polar point $(2,\pi)$ is (-2,0) in the Cartesian coordinates.

(3) From the polar point $(2, -2\pi/3)$, we have r = 2 and $\theta = \frac{-2\pi}{3}$. Hence,

$$x = r \cos \theta = 2 \cos \frac{-2\pi}{3} = -1 ,$$
$$y = r \sin \theta = 2 \sin \frac{-2\pi}{3} = -\sqrt{3}.$$

Therefore, the Cartesian coordinate $(-1, -\sqrt{3})$ is the point corresponding to the polar point $(2, -2\pi/3)$.

(4) From the polar point $(4, 3\pi/4)$, we have r = 4 and $\theta = \frac{3\pi}{4}$. Hence,

$$x = r \cos \theta = 4 \cos \frac{3\pi}{4} = -2\sqrt{2} ,$$
$$y = r \sin \theta = 4 \sin \frac{3\pi}{4} = 2\sqrt{2}.$$

In the Cartesian coordinates, the point $(4, 3\pi/4)$ is represented by $(-2\sqrt{2}, 2\sqrt{2})$.

Degrees	0	30	45	60	90	120	135	150	180	210	225	240	270	300	315	330	360
Radians	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	$\frac{2\pi}{3}$	$\frac{3\pi}{4}$	$\frac{5\pi}{6}$	π	$\frac{7\pi}{6}$	$\frac{5\pi}{4}$	$\frac{4\pi}{3}$	$\frac{3\pi}{2}$	$\frac{5\pi}{3}$	$\frac{7\pi}{4}$	$\frac{11\pi}{6}$	2π
$\sin \theta$	0	$\frac{1}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{\sqrt{3}}{2}$	1	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{1}{2}$	0	$\frac{-1}{2}$	$\frac{-1}{\sqrt{2}}$	$\frac{-\sqrt{3}}{2}$	-1	$\frac{-\sqrt{3}}{2}$	$\frac{-1}{\sqrt{2}}$	$\frac{-1}{2}$	0
$\cos heta$	1	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{1}{2}$	0	$\frac{-1}{2}$	$\frac{-1}{\sqrt{2}}$	$\frac{-\sqrt{3}}{2}$	-1	$\frac{-\sqrt{3}}{2}$	$\frac{-1}{\sqrt{2}}$	$\frac{-1}{2}$	0	$\frac{1}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{\sqrt{3}}{2}$	1
															J	لجدو	هذا ا

Question: For the given Cartesian point, find one representation in the polar coordinates.

- (1) (1,-1) (3) (-2,2)
- (2) $(2\sqrt{3}, -2)$ (4) (1, 1)

Solution:

(1) From the given Cartesian point, we have x = 1 and y = -1. Hence,

 $x^{2} + y^{2} = r^{2} \Rightarrow r = \sqrt{2},$ $\tan \theta = \frac{y}{x} = -1 \Rightarrow \theta = -\frac{\pi}{4}.$

In the polar coordinates, the Cartesian point (1, -1) can be represented by $(\sqrt{2}, -\frac{\pi}{4})$.

Remember, there are infinitely polar representations of the point (x, y) (see Note 4 on page ??).

(2) From the Cartesian point, we have $x = 2\sqrt{3}$ and y = -2. Hence,

$$x^{2} + y^{2} = r^{2} \Rightarrow r = 4,$$
$$\tan \theta = \frac{y}{x} = \frac{-1}{\sqrt{3}} \Rightarrow \theta = \frac{5\pi}{6}$$

Therefore, the polar point $(4, \frac{5\pi}{6})$ is one representation of the Cartesian point $(2\sqrt{3}, -2)$.

(3) From the Cartesian point, we have x = -2 and y = 2. Hence,

$$x^{2} + y^{2} = r^{2} \Rightarrow r = 2\sqrt{2},$$

 $\tan \theta = \frac{y}{x} = -1 \Rightarrow \theta = \frac{3\pi}{4}$

The polar point $(2\sqrt{2}, \frac{3\pi}{4})$ is one representation of the Cartesian point (-2, 2).

(4) From the Cartesian point, we have x = 1 and y = 1. Hence,

$$x^2 + y^2 = r^2 \Rightarrow r = \sqrt{2},$$

 $\tan \theta = \frac{y}{x} = 1 \Rightarrow \theta = \frac{\pi}{4}.$

The Cartesian point (1,1) can be represented by $(\sqrt{2}, \frac{\pi}{4})$ in the polar coordinates.

باستخدام الجدول