Question: Convert from polar coordinates to Cartesian coordinates.
(1) $(1, \pi / 4)$
(3) $(2,-2 \pi / 3)$
(2) $(2, \pi)$
(4) $(4,3 \pi / 4)$

Solution:
(1) From the polar point $(1, \pi / 4)$, we have $r=1$ and $\theta=\frac{\pi}{4}$. Hence,

$$
\begin{aligned}
& x=r \cos \theta=(1) \cos \frac{\pi}{4}=\frac{1}{\sqrt{2}} \\
& y=r \sin \theta=(1) \sin \frac{\pi}{4}=\frac{1}{\sqrt{2}}
\end{aligned}
$$

Therefore, in the Cartesian coordinates, the point $(1, \pi / 4)$ is represented by $\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$.
(2) From the polar point $(2, \pi)$, we have $r=2$ and $\theta=\pi$. Hence,

$$
\begin{gathered}
x=r \cos \theta=2 \cos \pi=-2 \\
y=r \sin \theta=2 \sin \pi=0
\end{gathered}
$$

Hence, the polar point $(2, \pi)$ is $(-2,0)$ in the Cartesian coordinates.
(3) From the polar point $(2,-2 \pi / 3)$, we have $r=2$ and $\theta=\frac{-2 \pi}{3}$. Hence,

$$
\begin{aligned}
& x=r \cos \theta=2 \cos \frac{-2 \pi}{3}=-1 \\
& y=r \sin \theta=2 \sin \frac{-2 \pi}{3}=-\sqrt{3}
\end{aligned}
$$

Therefore, the Cartesian coordinate $(-1,-\sqrt{3})$ is the point corresponding to the polar point $(2,-2 \pi / 3)$.
(4) From the polar point $(4,3 \pi / 4)$, we have $r=4$ and $\theta=\frac{3 \pi}{4}$. Hence,

$$
\begin{gathered}
x=r \cos \theta=4 \cos \frac{3 \pi}{4}=-2 \sqrt{2} \\
y=r \sin \theta=4 \sin \frac{3 \pi}{4}=2 \sqrt{2}
\end{gathered}
$$

In the Cartesian coordinates, the point $(4,3 \pi / 4)$ is represented by $(-2 \sqrt{2}, 2 \sqrt{2})$.

| Degrees | 0 | 30 | 45 | 60 | 90 | 120 | 135 | 150 | 180 | 210 | 225 | 240 | 270 | 300 | 315 | 330 | 360 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Radians | 0 | $\frac{\pi}{6}$ | $\frac{\pi}{4}$ | $\frac{\pi}{3}$ | $\frac{\pi}{2}$ | $\frac{2 \pi}{3}$ | $\frac{3 \pi}{4}$ | $\frac{5 \pi}{6}$ | π | $\frac{7 \pi}{6}$ | $\frac{5 \pi}{4}$ | $\frac{4 \pi}{3}$ | $\frac{3 \pi}{2}$ | $\frac{5 \pi}{3}$ | $\frac{7 \pi}{4}$ | $\frac{11 \pi}{6}$ | 2π |
| $\sin \theta$ | 0 | $\frac{1}{2}$ | $\frac{1}{\sqrt{2}}$ | $\frac{\sqrt{3}}{2}$ | 1 | $\frac{\sqrt{3}}{2}$ | $\frac{1}{\sqrt{2}}$ | $\frac{1}{2}$ | 0 | $\frac{-1}{2}$ | $\frac{-1}{\sqrt{2}}$ | $\frac{-\sqrt{3}}{2}$ | -1 | $\frac{-\sqrt{3}}{2}$ | $\frac{-1}{\sqrt{2}}$ | $\frac{-1}{2}$ | 0 |
| $\cos \theta$ | 1 | $\frac{\sqrt{3}}{2}$ | $\frac{1}{\sqrt{2}}$ | $\frac{1}{2}$ | 0 | $\frac{-1}{2}$ | $\frac{-1}{\sqrt{2}}$ | $\frac{-\sqrt{3}}{2}-1$ | $\frac{-\sqrt{3}}{2}$ | $\frac{-1}{\sqrt{2}}$ | $\frac{-1}{2}$ | 0 | $\frac{1}{2}$ | $\frac{1}{\sqrt{2}}$ | $\frac{\sqrt{3}}{2}$ | 1 | |

Question: For the given Cartesian point, find one representation in the polar coordinates.
(1) $(1,-1)$
(3) $(-2,2)$
(2) $(2 \sqrt{3},-2)$
(4) $(1,1)$

Solution:

(1) From the given Cartesian point, we have $x=1$ and $y=-1$. Hence,

$$
\begin{gathered}
x^{2}+y^{2}=r^{2} \Rightarrow r=\sqrt{2} \\
\tan \theta=\frac{y}{x}=-1 \Rightarrow \theta=-\frac{\pi}{4}
\end{gathered}
$$

In the polar coordinates, the Cartesian point $(1,-1)$ can be represented by $\left(\sqrt{2},-\frac{\pi}{4}\right)$.
Remember, there are infinitely polar representations of the point (x, y) (see Note 4 on page ??).
(2) From the Cartesian point, we have $x=2 \sqrt{3}$ and $y=-2$. Hence,

$$
\begin{gathered}
x^{2}+y^{2}=r^{2} \Rightarrow r=4 \\
\tan \theta=\frac{y}{x}=\frac{-1}{\sqrt{3}} \Rightarrow \theta=\frac{5 \pi}{6}
\end{gathered}
$$

Therefore, the polar point $\left(4, \frac{5 \pi}{6}\right)$ is one representation of the Cartesian point $(2 \sqrt{3},-2)$.
(3) From the Cartesian point, we have $x=-2$ and $y=2$. Hence,

$$
\begin{gathered}
x^{2}+y^{2}=r^{2} \Rightarrow r=2 \sqrt{2} \\
\tan \theta=\frac{y}{x}=-1 \Rightarrow \theta=\frac{3 \pi}{4} .
\end{gathered}
$$

The polar point $\left(2 \sqrt{2}, \frac{3 \pi}{4}\right)$ is one representation of the Cartesian point $(-2,2)$.
(4) From the Cartesian point, we have $x=1$ and $y=1$. Hence,

$$
\begin{aligned}
& x^{2}+y^{2}=r^{2} \Rightarrow r=\sqrt{2}, \\
& \tan \theta=\frac{y}{x}=1 \Rightarrow \theta=\frac{\pi}{4} .
\end{aligned}
$$

The Cartesian point $(1,1)$ can be represented by $\left(\sqrt{2}, \frac{\pi}{4}\right)$ in the polar coordinates.

