Questions on Motion in Two Dimensions

Q1: The vector position of a particle varies in time according to the expression

$$
\mathbf{r}=\left(3.00 \hat{\mathbf{i}}-6.00 t^{2} \hat{\mathbf{j}}\right) \mathrm{m}
$$

(a) Find expressions for the velocity and acceleration as functions of time. (b) Determine the particle's position and velocity at $\mathbf{t}=\mathbf{1 . 0 0} \mathrm{s}$.

Q2: A rock is thrown upward from the level ground in such way that the maximum height h of its flight is equal to the horizontal range R. At what angle θ was the rock thrown?

Q3: A projectile is fired in such a way that its horizontal range is equal to three times its maximum height. What is the angle of projection?

Q4: (a) A firefighter, a distance d from a burning building, directs a stream of water from a fire hose at angle θ_{i} above the horizontal as in the Figure. If the initial speed of the stream is vi, at what height h does the water strike the building?
(b) A firefighter 50.0 m away from a burning building directs a stream of water from a fire hose at an angle of 30.0° above the horizontal, as in the Figure. If the speed of the stream is $40.0 \mathrm{~m} / \mathrm{s}$, at what height will the water strike the building?

