Physics-145 Summer 2019

Quiz No. 2

Q1) A 5 kg block is dragged over a horizontal frictionless surface by a constant force of 30 N acting at an angle of 60° above the horizontal as shown. If the coefficient of kinetic friction is equal to 0.2 , then:

a) Calculate the magnitude of the frictional force.

$$
f_{k}=\mu_{k} N
$$

To find the normal force N, analyze the forces along the direction normal to the surface (i.e. the y-axis):

$$
\begin{aligned}
& F_{\text {net }}=m a \quad(y \text {-axis }) \\
& N+30 \sin 60-m g=\quad 0 \\
& \Rightarrow N=m g-30 \sin 60 \\
& \quad=(5)(9.8)-26=23 \mathrm{~N} \\
& \therefore f_{k}=0.2 \times 23=4.6 \mathrm{~N}
\end{aligned}
$$

b) Calculate the acceleration of the block.

To find the acceleration of the system a, analyze the forces along the direction of motion (i.e. the x-axis):

$$
\begin{gathered}
F_{\text {net }}=m a \\
30 \cos 60-f_{k}=m a \\
15-4.6=5 a \\
\Rightarrow a=2.08 \mathrm{~m} / \mathrm{s}^{2}
\end{gathered}
$$

c) If the block started the movement under the 30 N force from rest, what will be the speed of the block after a displacement of 5 m ?

From Chapter 1 (equations of motion with a constant acceleration) we have:

$$
\begin{gathered}
2 a \Delta x=v^{2}-v_{0}^{2} \\
2(2.08)(5)=v^{2}-0 \\
v^{2}=20.8 \mathrm{~m} / \mathrm{s} \\
\Rightarrow v=4.56 \mathrm{~m} / \mathrm{s}
\end{gathered}
$$

