(1) At $\mathrm{P}=1 \mathrm{~atm}$ and $\mathrm{T}=25^{\circ} \mathrm{C}$, the molecular diffusivity of 1%-Helium in Nitrogen is given $7 \times 10^{-5} \mathrm{~m}^{2} / \mathrm{s}$, its diffusivity at $P=1$ atm and $T=50^{\circ} \mathrm{C}$ will be
(a) $7 \times 10^{-5} \mathrm{~m}^{2} / \mathrm{s}$
$\sqrt{ }$ (b) less than 14×10^{-5} and more than $7 \times 10^{-5} \mathrm{~m}^{2} / \mathrm{s}$
(c) $14 \times 10^{-5} \mathrm{~m}^{2} / \mathrm{s}$
(d) more than $14 \times 10^{-5} \mathrm{~m}^{2} / \mathrm{s}$
(2) At $\mathrm{P}=1 \mathrm{~atm}$ and $\mathrm{T}=25^{\circ} \mathrm{C}$, the molecular diffusivity of 1%-Helium in Nitrogen is given $7 \times 10^{-5} \mathrm{~m}^{2} / \mathrm{s}$, its diffusivity at $P=0.5$ atm and $T=25^{\circ} \mathrm{C}$ will be
(a) $7 \times 10^{-5} \mathrm{~m}^{2} / \mathrm{s}$
(b) less than 14×10^{-5} and more than $7 \times 10^{-5} \mathrm{~m}^{2} / \mathrm{s}$
$\sqrt{(c)} 14 \times 10^{-5} \mathrm{~m}^{2} / \mathrm{s}$
(d) more than $14 \times 10^{-5} \mathrm{~m}^{2} / \mathrm{s}$
(3) At $\mathrm{P}=1 \mathrm{~atm}$ and $\mathrm{T}=25^{\circ} \mathrm{C}$, the molecular diffusivity of 1%-Helium in Nitrogen is given $7 \times 10^{-5} \mathrm{~m}^{2} / \mathrm{s}$. At $\mathrm{P}=1$ atm and $\mathrm{T}=25^{\circ} \mathrm{C}$, molecular diffusivity of 10%-Helium in Nitrogen will be
$\sqrt{(a)} 7 \times 10^{-5} \mathrm{~m}^{2} / \mathrm{s}$
(b) less than 14×10^{-5} and more than $7 \times 10^{-5} \mathrm{~m}^{2} / \mathrm{s}$
(c) $14 \times 10^{-5} \mathrm{~m}^{2} / \mathrm{s}$
(d) more than $14 \times 10^{-5} \mathrm{~m}^{2} / \mathrm{s}$
(4) At $\mathrm{P}=1 \mathrm{~atm}$ and $\mathrm{T}=25^{\circ} \mathrm{C}$, the molecular diffusivity of 1%-Helium in Nitrogen is given $7 \times 10^{-5} \mathrm{~m}^{2} / \mathrm{s}$. At $\mathrm{P}=1$ atm and $\mathrm{T}=25^{\circ} \mathrm{C}$, molecular diffusivity of1\%-Nitrogen in Helium will be
$\sqrt{ }(\mathrm{a}) 7 \times 10^{-5} \mathrm{~m}^{2} / \mathrm{s}$
(b) less than 14×10^{-5} and more than $7 \times 10^{-5} \mathrm{~m}^{2} / \mathrm{s}$
(c) $14 \times 10^{-5} \mathrm{~m}^{2} / \mathrm{s}$
(d) more than $14 \times 10^{-5} \mathrm{~m}^{2} / \mathrm{s}$
(5) At $\mathrm{P}=1 \mathrm{~atm}$ and $\mathrm{T}=25^{\circ} \mathrm{C}$, the molecular diffusivity of air in water vapor is $2.6 \times 10^{-5} \mathrm{~m}^{2} / \mathrm{s}$. At $\underline{\mathrm{P}=1}$ atm and $\mathrm{T}=$ $25^{\circ} \mathrm{C}$, the molecular diffusivity of air in liquid water is approximately
(a) $2.2 \times 10^{-2} \mathrm{~m}^{2} / \mathrm{s}$
(b) $2.6 \times 10^{-3} \mathrm{~m}^{2} / \mathrm{s}$
(c) $2.6 \times 10^{-5} \mathrm{~m}^{2} / \mathrm{s}$
$\sqrt{(d)} 2.2 \times 10^{-9} \mathrm{~m}^{2} / \mathrm{s}$
(6) At $\mathrm{P}=1 \mathrm{~atm}$ and $\mathrm{T}=25^{\circ} \mathrm{C}$, the molecular diffusivity of air in water vapor is $2.6 \times 10^{-5} \mathrm{~m}^{2} / \mathrm{s}$. At $\underline{\mathrm{P}=2}$ atm and $\mathrm{T}=$ $25^{\circ} \mathrm{C}$, the molecular diffusivity of air in liquid water is approximately
(a) $2.2 \times 10^{-2} \mathrm{~m}^{2} / \mathrm{s}$
(b) $2.6 \times 10^{-3} \mathrm{~m}^{2} / \mathrm{s}$
(c) $2.6 \times 10^{-5} \mathrm{~m}^{2} / \mathrm{s}$
$\sqrt{ }(d) 2.2 \times 10^{-9} \mathrm{~m}^{2} / \mathrm{s}$
(7) At a given temperature and pressure, the complete evaporation of a droplet of liquid of 2 mm diameter takes about 300 s approximately. How much time will approximately be required for the complete evaporation of a droplet of water of diameter $=4 \mathrm{~mm}$.
(a) 150 s
(b) 300 s
(c) 600 s
$\sqrt{ }(\mathrm{d}) 1200 \mathrm{~s}$

Water at $25^{\circ} \mathrm{C}$ is flowing in a covered irrigation ditch below ground. Every 100 m , there is a vent line 30 mm inside diameter and 1.0 m long to the outside atmosphere at $25^{\circ} \mathrm{C}$. There are 10 vents in the 1000m ditch. The outside air can be assumed to be dry. Calculate the total evaporation loss of water in kg/day. Use the diffusivity data from Table 6.2-1.

$$
\begin{aligned}
& T=298 \mathrm{~K} ; P=1.01325 \times 10^{5} \mathrm{~Pa} ; D_{A B}=2.6 \times 10^{-5} \mathrm{~m}^{2} / \mathrm{s} \\
& \text { Area }=\pi(30 / 1000)^{2} \mathrm{~m}^{2}=7.07 \times 10^{-4} \mathrm{~m}^{2} \\
& p_{A 1}=3116 \mathrm{~Pa}\left(\text { Vapor pressure of water vapor at } 25^{\circ} \mathrm{C}\right) \\
& p_{A 2}=0 \text { (Assuming dry air, i.e. no water vapor) } \\
& p_{B 1}=\mathrm{P}-p_{A 1}=101.325 \times 10^{3}-3.116 \times 10^{3}=98,159 \mathrm{~Pa} \\
& p_{B 2}=\mathrm{P}-p_{A 2}=101.325 \times 10^{5}-0=101,325 \mathrm{~Pa} \\
& p_{B M}=\frac{p_{B 2}-p_{B 1}}{\ln \frac{p_{B 2}}{p_{B 1}}}=\frac{p_{A 1}-p_{A 2}}{\ln \frac{p_{B 2}}{p_{B 1}}}=99734 \mathrm{~Pa}
\end{aligned}
$$

When, $p_{B 1} \approx p_{B 2} ; p_{B M} \cong \frac{p_{B 1}+p_{B 2}}{2}=99742 P a$

$$
\begin{aligned}
& N_{A}=\frac{D_{A B}}{\left(z_{2}-z_{1}\right)} \frac{P}{R T} \frac{p_{A 1}-p_{A 2}}{p_{B M}}=\frac{2.6 \times 10^{-5}}{1.0} \frac{1.01325 \times 10^{5}}{8314 \times 298} \frac{(3116-0)}{99734}=3.38 \times 10^{-8} \frac{\mathrm{~kg} \mathrm{~mol}}{\mathrm{~m}^{2} \cdot \mathrm{~s}} \\
& \begin{aligned}
n_{A}= & N_{A} \times \text { Area }
\end{aligned} \\
& \times M W \times(\mathrm{s} / \text { day }) \times \text { vents } \\
&=3.38 \times 10^{-8} \frac{\mathrm{~kg} \mathrm{~mol}}{\mathrm{~m}^{2} \cdot \mathrm{~s}} \times 7.07 \times 10^{-4} \mathrm{~m}^{2} \times 18 \frac{\mathrm{~kg}}{\mathrm{~kg} \mathrm{~mol}} \times \frac{86400 \mathrm{~s}}{\mathrm{day}} \times 10 \\
&=3.71 \times 10^{-4} \frac{\mathrm{~kg}}{\mathrm{~d}}
\end{aligned}
$$

(1) At $\mathrm{P}=1 \mathrm{~atm}$ and $\mathrm{T}=25^{\circ} \mathrm{C}$, the molecular diffusivity of 1%-Helium in Nitrogen is given $7 \times 10^{-5} \mathrm{~m}^{2} / \mathrm{s}$, its diffusivity at $\mathrm{P}=0.5$ atm and $\mathrm{T}=25^{\circ} \mathrm{C}$ will be
(a) $7 \times 10^{-5} \mathrm{~m}^{2} / \mathrm{s}$
(b) less than 14×10^{-5} and more than $7 \times 10^{-5} \mathrm{~m}^{2} / \mathrm{s}$
$\sqrt{ }$ (c) $14 \times 10^{-5} \mathrm{~m}^{2} / \mathrm{s}$
(d) more than $14 \times 10^{-5} \mathrm{~m}^{2} / \mathrm{s}$

At $\mathrm{P}=1$ atm and $\mathrm{T}=25^{\circ} \mathrm{C}$, the molecular diffusivity of 1%-Helium in Nitrogen is given $7 \times 10^{-5} \mathrm{~m}^{2} / \mathrm{s}$, its diffusivity at $\mathrm{P}=1 \mathrm{~atm}$ and $\mathrm{T}=50^{\circ} \mathrm{C}$ will be
(a) $7 \times 10^{-5} \mathrm{~m}^{2} / \mathrm{s}$
$\sqrt{ }$ (b) less than 14×10^{-5} and more than $7 \times 10^{-5} \mathrm{~m}^{2} / \mathrm{s}$
(c) $14 \times 10^{-5} \mathrm{~m}^{2} / \mathrm{s}$
(d) more than $14 \times 10^{-5} \mathrm{~m}^{2} / \mathrm{s}$
(3) At $\mathrm{P}=1 \mathrm{~atm}$ and $\mathrm{T}=25^{\circ} \mathrm{C}$, the molecular diffusivity of $\underline{1 \% \text {-Helium in Nitrogen }}$ is given $7 \times 10^{-5} \mathrm{~m}^{2} / \mathrm{s}$. At $\mathrm{P}=1$ atm and $\mathrm{T}=25^{\circ} \mathrm{C}$, molecular diffusivity of 10%-Helium in Nitrogen will be
(a) $14 \times 10^{-5} \mathrm{~m}^{2} / \mathrm{s}$
(b) less than 14×10^{-5} and more than $7 \times 10^{-5} \mathrm{~m}^{2} / \mathrm{s}$
$\sqrt{ }$ (c) $7 \times 10^{-5} \mathrm{~m}^{2} / \mathrm{s}$
(d) more than $14 \times 10^{-5} \mathrm{~m}^{2} / \mathrm{s}$
(4) At $\mathrm{P}=1 \mathrm{~atm}$ and $\mathrm{T}=25^{\circ} \mathrm{C}$, the molecular diffusivity of $\underline{1 \% \text {-Helium in Nitrogen }}$ is given $7 \times 10^{-5} \mathrm{~m}^{2} / \mathrm{s}$. At $\mathrm{P}=1$ atm and $\mathrm{T}=25^{\circ} \mathrm{C}$, molecular diffusivity of1\%-Nitrogen in Helium will be
(a) $14 \times 10^{-5} \mathrm{~m}^{2} / \mathrm{s}$
(b) less than 14×10^{-5} and more than $7 \times 10^{-5} \mathrm{~m}^{2} / \mathrm{s}$
$\sqrt{ }$ (c) $7 \times 10^{-5} \mathrm{~m}^{2} / \mathrm{s}$
(d) more than $14 \times 10^{-5} \mathrm{~m}^{2} / \mathrm{s}$
(5) At $\mathrm{P}=1 \mathrm{~atm}$ and $\mathrm{T}=25^{\circ} \mathrm{C}$, the molecular diffusivity of air in water vapor is $2.6 \times 10^{-5} \mathrm{~m}^{2} / \mathrm{s}$. At $\underline{\mathrm{P}=1}$ atm and $\mathrm{T}=$ $25^{\circ} \mathrm{C}$, the molecular diffusivity of air in liquid water is approximately
(a) $2.2 \times 10^{-2} \mathrm{~m}^{2} / \mathrm{s}$
(b) $2.6 \times 10^{-3} \mathrm{~m}^{2} / \mathrm{s}$
(c) $2.6 \times 10^{-5} \mathrm{~m}^{2} / \mathrm{s}$
$\sqrt{ }\left(\right.$ d) $2.2 \times 10^{-9} \mathrm{~m}^{2} / \mathrm{s}$
(6) At a given temperature and pressure, the complete evaporation of a droplet of liquid of 2 mm diameter takes about 300 s approximately. How much time will approximately be required for the complete evaporation of a droplet of water of diameter $=4 \mathrm{~mm}$?
(a) 150 s
(b) 300 s
(c) 600 s
$\sqrt{ }$ (d) 1200 s
(7) At $\mathrm{P}=1 \mathrm{~atm}$ and $\mathrm{T}=25^{\circ} \mathrm{C}$, the molecular diffusivity of air in water vapor is $2.6 \times 10^{-5} \mathrm{~m}^{2} / \mathrm{s}$. At $\underline{\mathrm{P}=2}$ atm and $\mathrm{T}=$ $25^{\circ} \mathrm{C}$, the molecular diffusivity of air in liquid water is approximately
(a) $2.2 \times 10^{-2} \mathrm{~m}^{2} / \mathrm{s}$
(b) $2.6 \times 10^{-3} \mathrm{~m}^{2} / \mathrm{s}$
(c) $2.6 \times 10^{-5} \mathrm{~m}^{2} / \mathrm{s}$
$\sqrt{ }$ (d) $2.2 \times 10^{-9} \mathrm{~m}^{2} / \mathrm{s}$

Water at $25^{\circ} \mathrm{C}$ is

 flowing in a covered irrigation ditch below ground. Every 100 m , there is a vent line 20 mm inside diameter and $0.5-\mathrm{m}$ long to the outside atmosphere at $25^{\circ} \mathrm{C}$. There are 10 vents in the $1000-\mathrm{m}$ ditch. The outside air can be assumed to be dry. Calculate the total evaporation loss of water in kg/day. Use the diffusivity data from Table 6.2-1.$T=298 \mathrm{~K} ; P=1.01325 \times 10^{5} \mathrm{~Pa} ; D_{A B}=2.6 \times 10^{-5} \mathrm{~m}^{2} / \mathrm{s}$
Area $=\pi(20 / 1000)^{2} \mathrm{~m}^{2}=3.14 \times 10^{-4} \mathrm{~m}^{2}$
$p_{A 1}=3116 \mathrm{~Pa}$ (Vapor pressure of water vapor at $\left.25^{\circ} \mathrm{C}\right)$
$p_{A 2}=0$ (Assuming dry air, i.e. no water vapor)
$p_{B 1}=\mathrm{P}-p_{A 1}=101.325 \times 10^{3}-3.116 \times 10^{3}=98,159 \mathrm{~Pa}$
$p_{B 2}=\mathrm{P}-p_{A 2}=101.325 \times 10^{5}-0=101,325 \mathrm{~Pa}$
$p_{B M}=\frac{p_{B 2}-p_{B 1}}{\ln \frac{p_{B 2}}{p_{B 1}}}=\frac{p_{A 1}-p_{A 2}}{\ln \frac{p_{B 2}}{p_{B 1}}}=99734 \mathrm{~Pa}$

When, $p_{B 1} \approx p_{B 2} ; p_{B M} \cong \frac{p_{B 1}+p_{B 2}}{2}=99742 P a$
$N_{A}=\frac{D_{A B}}{\left(z_{2}-z_{1}\right)} \frac{P}{R T} \frac{p_{A 1}-p_{A 2}}{p_{B M}}=\frac{2.6 \times 10^{-5}}{0.5} \frac{1.01325 \times 10^{5}}{8314 \times 298} \frac{(3116-0)}{99734}=6.75 \times 10^{-8} \frac{\mathrm{~kg} \mathrm{~mol}}{\mathrm{~m}^{2} \cdot \mathrm{~s}}$
$n_{A}=N_{A} \times$ Area $\times M W \times(s /$ day $) \times$ vents
$=6.75 \times 10^{-8} \frac{\mathrm{~kg} \mathrm{~mol}}{\mathrm{~m}^{2} \cdot \mathrm{~s}} \times 3.14 \times 10^{-4} \mathrm{~m}^{2} \times 18 \frac{\mathrm{~kg}}{\mathrm{~kg} \mathrm{~mol}} \times \frac{86400 \mathrm{~s}}{d a y} \times 10$
$=3.30 \times 10^{-4} \frac{\mathrm{~kg}}{\mathrm{~d}}$

