

IE-352 Section 3, CRN: 48706/7/8 Section 4, CRN: 58626/7/8

Second Semester 1438-39 H (Spring-2018) – 4(4,1,2)

"MANUFACTURING PROCESSES - 2"

Monday, April 02, 2018 (16/07/1439H)

Quiz 4 [10 Points] ANSWERS

Name:	Student Number:	Section (circle):
	43	M-W ; S-M-T-W

Answer the following question.

A hole is being drilled using a 30-mm twist drill bit, at a hole depth of $100\,mm$, cutting speed of $300\,rpm$, feed of $0.25\,mm/rev$, and specific cutting resistance of $2000\,N/mm^2$. Calculate the following [1 Point each]:

- a) chip area
- b) main cutting force
- c) drill velocity (i.e. feed rate)
- d) machining time
- e) material-removal rate
- f) quantity of material (volume) removed
- g) power dissipated
- h) torque on the drill
- i) motor power required if machine efficiency in 85%
- j) How long will it take to perform this operation if the speed is increased by 20% and the feed is decreased by 25%?

Given:

- Process: drilling
- Workpiece parameters:
 - OD = 30 mm
 - $oldsymbol{l} l = 100 mm$

$$K_s = 2000 \, N/mm^2$$

Tool parameters:

$$o$$
 $N = 300 rev/min$

o
$$f = 0.25 \, mm/rev$$

Solution:

a) chip area, A_{chip}

$$A_{chip} = \frac{fD}{4} = \frac{(0.25 \ mm)(30 \ mm)}{4} = 1.875 \ mm^2$$

 $A_{chip} = 1.88 \, mm^2$

b) main cutting force, F_c

$$F_c = sp. cutting force * undeformed chip area$$

= $K_s * A_{chip} = \left(2000 \frac{N}{mm^2}\right) (1.875 \text{ mm}^2) = 3,750 \text{ N}$

$$F_c = 3.75 \, kN$$

c) feed rate, v

$$v = f \cdot N = \left(0.25 \frac{mm}{rev}\right) (300 \ rev/min) = 75 \ mm/min$$

$$\mathbf{v} = 75.0 \, mm/min$$

d) machining time, t

$$t = \frac{l + D/4}{fN} = \frac{(100 \text{ mm}) + (30 \text{ mm/4})}{(0.25 \text{ mm/rev})(300 \text{ rev/min})} = 1.433 \text{ min}$$

$$t = 1.43 min = 86.0 s$$

e) material-removal rate, MRR

$$\Rightarrow MRR = \frac{\pi D^2}{4} \cdot fN = \pi \left(\frac{30^2 \text{ mm}^2}{4}\right) \cdot \left(0.25 \frac{\text{mm}}{\text{rev}}\right) \cdot (300 \text{ rev/min})$$

$$= 53014.38 \text{ mm}^3/\text{min} = 883.57 \text{ mm}^3/\text{s} = 53.01 \text{ cm}^3/\text{min}$$

$$MRR = 883.6 \, mm^3/s = 53.0 \, cm^3/min$$

f) volume removed, material

$$material = material \ removal \ rate * cutting \ time$$

= $MRR * t = (53.01 \ cm^3/min) \cdot (1.433 \ min) = 75.99 \ cm^3$

 \triangleright vol.removed = 76.0 cm³

g) power dissipated, Power

• $Power = u_t \cdot MRR$

Note,
$$u_t = 2000 \frac{N}{mm^2} * \frac{1 \, m/s}{1000 \, mm/s} = 2.0 \, W \cdot s / mm^3$$

$$\Rightarrow Power = (2.0 \ W \cdot s/mm^3) \cdot \left(883.6 \frac{mm^3}{s}\right) = 1767.15 \ W$$

• Another solution (also good way to check your answer):

$$Power = F_c \cdot V = F_c \cdot \left(2\pi \cdot \frac{D}{2} \cdot N\right)$$

$$= (3,750 \ N)$$

$$\cdot \left[\left(\pi \frac{rad}{rev}\right) (30 \ mm) \left(300 \ \frac{rev}{min}\right) \left(\frac{1 \ m}{1000 \ mm}\right) \left(\frac{1 \ min}{60 \ s}\right) \right]$$

$$= (3,750 \ N) \cdot \left(0.471 \frac{m}{s}\right) = 1767.15 \ N = 1.77 \ kN$$

Power = 1.77 kN

h) torque on the spindle, Torque

Torque =
$$F_c \cdot D/2 = (3,750 \text{ N}) \cdot \left(30 \frac{mm}{2}\right) \left(1 \frac{m}{1000 \text{ mm}}\right) = 56.25 \text{ N} \cdot m$$

Another solution (also good way to check your answer):

Torque =
$$\frac{Power}{\omega} = \frac{1767.15 \, W}{2\pi N} = \frac{1767.15 \, N \cdot m/s}{(2\pi)(300) \, rad/min} * \frac{60 \, s}{min}$$

= 56.25 $N \cdot m$

 $Torque = 56.3 N \cdot m$

i) Motor Power, $Power_m$

$$motor\ efficiency: \eta_m = 0.85 = \frac{Power}{Power_m}$$

$$\Rightarrow Power_m = \frac{Power}{\eta_m} = \frac{1.76715 \text{ kW}}{0.85} = 2.079 \text{ kW}$$

 $Power_m = 2.08 \, kW$

t = 1.59 min = 95.6 s

i) Given for condition 2:

$$N_2 = N_1 + 0.2N_1 = 1.2N_1 = 1.2 * 300 \ rev/min = 360 \ rev/min$$

$$f_2 = f_1 - 0.25f_1 = 0.75f_1 = 0.75 * 0.25 \ mm/rev = 0.1875 \ mm/rev$$

$$\Rightarrow t_2 = \frac{l + D/4}{f_2 N_2} = \frac{(100 \ mm) + (30 \ mm/4)}{(0.1875 \ mm/rev)(360 \ rev/min)} = 1.593 \ min$$

Note, we could calculate the increase in machining time as follows:

$$\frac{t_2 - t_1}{t_1} = \frac{\frac{l + D/4}{f_2 N_2} - \frac{l + D/4}{f_1 N_1}}{\frac{l + D/4}{f_1 N_1}} = \frac{f_1 N_1}{f_2 N_2} - \frac{f_1 N_1}{f_1 N_1} = \frac{f_1 N_1}{(0.75 f_1)(1.2 N_1)} - 1$$

$$= \frac{1}{0.9} - 1 = 0.1111 = 11.1\%$$