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ABSTRACT
The designing of metal-based anticancer therapeutic agents can be optimized in a better and rapid
way if the ligands utilized have standalone properties. Therefore, even when the organometallic/coord-
ination complex (i.e., metallodrug) gets dissociated in extreme conditions, the ligand can endorse its
biological properties. Herein, we have synthesized and characterized �6-p-cymene ruthenium diclofe-
nac complex. Furthermore, the ruthenium complex interactions with human serum albumin (HSA) and
ct-DNA have been studied using various spectroscopic studies viz., UV, fluorescence, and circular
dichroism and exhibited a significant binding propensity. Furthermore, in vitro cytotoxicity assays were
carried out against human breast cancer “MCF-7” cell line. The �6-p-cymene ruthenium diclofenac
complex registered significant cytotoxicity with an IC50 value of �25.0mM which is comparable to the
standard drugs. The �6-p-cymene ruthenium diclofenac complex was able to decrease the MCF-7 cell
proliferation and induced significant levels of apoptosis with relatively low toxicity.
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1. Introduction

Metallo-chemotherapeutics is a well-established conventional
selection for a wide range of diseases since ancient times, par-
ticularly for antibacterial, antifungal, analgesic, antipyretic, and
anticancer. After the serendipitous discovery of cisplatin and its
derivatives (Rosenberg, Van Camp, Grimley, & Thomson, 1967;
Rosenberg, VanCamp, Trosko, & Mansour, 1969; Rosenberg,
1977, 1978), the field of metal-based chemotherapeutics got
triggered, and since then, the field is evolved stalwartly.
However, the acquired, intrinsic resistance and adverse side
effects have marred the remarkable success of platinum-based
drug candidates (Barry & Sadler, 2013; Galanski, Arion, Jakupec,
& Keppler, 2003; Gasser & Metzler-Nolte 2012; Hill & Speer,
1982; Kelland, 2007; Khan et al., 2014).

In lieu of the problem of undesirable side effects and to
improve efficacy, ruthenium complexes emerged as the
potential class of anticancer agents. Among the Ru(III) com-
pounds, NAMI-A (a metastasis agent) (imidazolium trans-[tet-
rachlorido(dimethyl sulfoxide (DMSO))(1H-imidazole)
ruthenate (III)] and KP1019 (indazolium trans-[tetrachloridobis
(1H-indazole)ruthenate(III)] and KP1339 (sodium (indazolium
trans-[tetrachloridobis(1H-indazole)ruthenate(III)] exhibited
potential activity against human tumor models, which are sub-
jected to phase II clinical trials (Hartinger, Metzler-Nolte, &
Dyson, 2012; Hartinger 2006, 2008). In recent decades, fluxional

ruthenium arene complexes have emerged as versatile scaf-
folds for the design of the new metallodrugs (Mehta, Gajera, &
Patel, 2017; Yadav & Singh, 2018; Yuan, Zhang, Zheng, &
Wang, 2013). In this area of half sandwich-organoruthenium,
groups of scientist viz., Sadler et al. (Zhang & Sadler, 2017;
Bruijnincx & Sadler, 2009), Dyson et al. (Nazarov, Hartinger, &
Dyson, 2014; Murray, Babak, Hartinger, & Dyson, 2016), and
Keppler et al. (Hartinger et al., 2006; Renfrew et al., 2009) with
their co-workers have marked a tremendous success with
piano-stool-type geometry. RAPTA-C [(�6-p-cymene)Ru(PTA)Cl2],
PTA; 1,3,5-triaza-7-phosphatricyclo[3.3.1.1]decane and RM175
[Ru(�6-biphenyl)(ethylene-diamine)Cl]þ are the representatives
of this class and hit the clinical trials with good impact. Merely
having slight modifications in the structures of the two, they
exhibited extremely different biological properties. These lead
molecular frameworks have been extensively modified at both
the ends viz., arenes part as well as the co-ligand/s to build up
a structural–activity relationship (SAR) and decorated with dif-
ferent functionalities to get target specificity of the
drug candidates.

Interestingly, combination therapy has also emerged in
scientist who are working on the already existing drugs
mainly nonsteroidal anti-inflammatory drugs (NSAIDs) and
combining with the metal centers and studying the synergis-
tic effect of metallodrugs, which have shown significant
potential. In organo-ruthenium complexes, Turel et al. (Hudej
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et al., 2012; Kljun et al., 2011; Turel et al., 2010) synthesized
Ru(arene) complexes of antibacterial compounds viz., nali-
dixic acid, ofloxacin. Likewise, Aman et al. (2014) have devel-
oped ruthenium arene compounds with oxicam moieties
namely piroxicam and meloxicam (see Figure 1).

Thus, standing on this, we have studied the �6-p-cymene
ruthenium- derived diclofenac complex (1) as a potential
metallo-chemotherapeutic agent. The binding affinity of
ruthenium complex with DNA and human serum albumin
(HSA) has also been studied using various spectroscopic
techniques and calculating various binding parameters.
Furthermore, this ruthenium complex was studied against
MCF-7 human breast cancer cell lines via cytotoxicity assays,
studying the apoptotic potential and morphological changes
induced by the potential metallodrug.

2. Experimental section

2.1. Materials and methods

The sodium salt of ct-DNA (D1501, Type I, fibers) and HSA
essentially fatty acid free (�98%) were purchased from
Sigma-Aldrich, St. Louis, MO.
Tris(hydroxymethyl)aminomethane hydrochloride (Tris-HCl)
was of analytical grade and also obtained from Sigma. Fetal
bovine serum (FBS), trypsin/EDTA, and penicillin–streptomy-
cin were purchased from Invitrogen (Carlsbad, CA). Trypan
blue, phosphate buffered saline (PBS), dimethyl sulfoxide
(DMSO), ethidium bromide, acridine orange, and Dulbecco’s
Modified Eagle’s medium (DMEM) were obtained from
Sigma-Aldrich (St. Louis, MO). Cell Titer 96VR Non-radioactive
cell proliferation assay kit was obtained from Promega
(Madison, WI). Annexin V-FITC apoptosis detection kit was
purchased from BD Biosciences (San Diego, CA). Culture
wares and other consumables used in this study were pro-
cured from Nunc, Roskilde, Denmark.

2.2. Biological studies

2.2.1. HSA binding studies
HSA binding studies were carried out using UV–visible
(UV–vis), fluorescence quenching, and circular dichroism
methods, and the detailed experimental procedures for these
studies have been described elsewhere (Afzal, Al-Lohedan,
Usman, & Tabassum, 2018; Alsalme et al., 2016; Mach, Volkin,
Burke, & Middaugh, 1995; Tabassum et al., 2017; Yousuf,
Bashir, Arjmand, & Tabassum, 2018).

2.2.2. DNA binding studies
UV–vis spectroscopy, in the range of 225–350 nm, was used
to understand the binding of �6-p-cymene ruthenium diclo-
fenac complex (1) with DNA. Increasing concentration of ct-
DNA was titrated against 30 � 10�6 mol dm�3 of �6-p-cym-
ene ruthenium diclofenac complex. A fixed amount of ct-

Figure 1. Structures of the representatives of this class of �6-p-cymene ruthenium complexes.

Figure 2. Schematic representation of the (�6-p-cymene) ruthenium complex of diclofenac (1).

Figure 3. Difference UV–visible spectra of HSA-complex binding. [HSA]¼ 3 lM.
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DNA (0–30 � 10�6 mol dm�3) was taken in the blank, and
baseline was corrected before each measurement. The bind-
ing mode of the �6-p-cymene ruthenium diclofenac complex
was seen by competitive binding assay using EtBr and DAPI
dyes. The circular dichroism studies of ct-DNA in the pres-
ence of complex were carried out similarly as described in
the case of HSA binding (Afzal et al., 2018; Khan, Yadav,
Hussain, Arjmand, & Tabassum, 2014; Mach et al., 1995;
Tabassum et al., 2012; Yousuf et al., 2018).

2.2.3. Cell cultures, and in vitro cytotoxicity, apoptosis
experiments
The MCF-7 human breast cancer cell culture, cytotoxicity,
and apoptosis experiments were carried out by using stand-
ard protocols as adopted by Farah et al. (2016) with slight
modifications; for more details, see Supplementary
information.

3. Result and discussion

3.1. Synthesis and characterization

To synthesize the ruthenium �6-arene NSAID compound (1),
the sodium salt of diclofenac reacted with (�6-p-cymene)
ruthenium dichloride dimer was stirred in dry methanol and
few drops of DMSO. The mixture was stirred at 80 �C for 10
h, and the reaction mixture kept on slow evaporation. The
yellow color precipitation in yield of 68% was obtained.
Unfortunately, after several attempts, we are unable to grow
suitable single crystals for X-ray study. However, the ruthe-
nium compounds synthesized were characterized by several

spectroscopic and analytical methods. Stability in aqueous
medium and DMSO is an essential requirement for drug can-
didates, since DMSO/water was used to make a stock solu-
tion for biological studies. The ruthenium compound was
found to be quite stable in DMSO while in H2O, the chlorine
atom gets hydrolyzed and forms an aqua complex of ruthe-
nium over a period of 1 h (Figure 2).

The FT-IR spectrum of the complex 1 showed �asym (C–O)
and �sym (C–O) at 1567 and 1459 cm�1, respectively, which
is characteristic for the bidentate coordination of carboxylate
group of the ligand with a metal center. The difference
between [�asym (CO) � �sym (CO)] is 108 cm�1, which is less
than 150 cm�1 and thus confirms the bidentate binding
mode of the carboxylate moiety. The FT-IR spectrum exhib-
ited absorption band at 1157, 976, and 908 cm�1, exhibiting
a significant shift in m(S–O) corresponding to free DMSO
(1005 cm�1). Thus ascertains the coordination of DMSO
through sulfur to the metal center. The band at 438 cm�1 is
attributed to the m(Ru–O) (see Figure S1, electronic
Supplementary information).

The proton nuclear magnetic resonance (1H NMR) of com-
plex 1 in DMSO-d6 resulted in significant shifts when com-
pared to the ligand. Complexation with ligand is confirmed
by the disappearance of the carboxylic O–H signal from
10.27 ppm and the appearance of the p-cymene proton add-
itional signals. An upfield shift of the signals of 0.7–0.5 ppm
of the ligand was observed in the ligand upon complexation.
The band associated with the DMSO coordinated with the
metal center and in solution due to the dissociation of the
labile chlorido which is also quite evident and which leads to
the formation of a most stable product which is ascertained

(a) (b)

(c)

Figure 4. Effect of complex 1 on the fluorescence emission spectra (kex¼ 295 nm) of HSA at (a) 25, (b) 35, and (c) 45 �C. [HSA]¼ 3 mM, [complex]¼ 0, 2.5, 5, 7.5,
10 mM.
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by the electrospray ionization mass spectrometry (ESI-MS) of
the complex (see Figures S2–S6, Supplementary information).

The UV–vis spectrum of the ligand exhibited the band at
around �275 nm (n–p� transition), and upon complexation,
complex 1 displayed the band complex at �260 nm with a
significant shift of around 15 cm�1 and the new band
appears at 323 nm (LMCT band) which confirms the coordin-
ation. The emission spectrum of the ruthenium complex was
also taken in solution and found to exhibit signals at �360
nm (see Figures S8 and S9, Supplementary information).

3.2. Biological studies

3.2.1. HSA binding studies
The difference UV–vis spectra of HSA with various concentra-
tions of complex 1 are shown in Figure 3.

HSA gives a peak at 280 nm which can be used to see
the changes during its binding with the ligand (Mach et al.,
1995). The increased intensity of the protein–Ru–diclofenac
system in comparison to the pure HSA is an indication of the
complex formation between HSA and Ru–diclofenac; more-
over, a noticeable red shift of the absorption maximum is
due to the involvement of electrostatic interaction.

The fluorescence intensity of HSA decreases gradually (Ali
& Al-Lohedan, 2013, 2017) with the increase in the concen-
tration of Ru–diclofenac complex (Figure 4). Since there is a
significant red shift of about 11 nm in the maximum fluores-
cence emission at a wavelength, the involvement of electro-
static interactions has been proposed (Mandeville, Froehlich,
& Tajmir-Riahi, 2009).

Various fluorescence and binding parameters have been
calculated using Figures 5 and 6 and Equations (S1)–(S3) (for
equations, see Supplementary information), and their values
are summarized in Table 1 (Anand, Jash, & Mukherjee, 2010;
Lakowicz, 1999).

A decreasing trend of the Stern–Volmer constant demon-
strates the involvement of the static type of quenching
mechanism. Binding parameters were computed using
Equation (3) and Figure 5(b), and the data are displayed in
Table 1. There was approximately 1:1 binding between HSA
and complex 1. The thermodynamic parameters (change in
enthalpy (DH), entropy (DS), and free energy change (DG))
were calculated adopting the widely used Van’t Hoff equa-
tion (Usman et al., 2017), for which the plot is given in
Figure 6.

The values of thermodynamic parameters, calculated by
Equations (S4) and (S5) (for equations, see Supplementary
information) using Figure 6, are given in Table 1, and it is
clear from the negative values of DG that the binding of
complex 1 with HSA is a spontaneous process. The inter-
action is also a highly exothermic process with a substantial
ordering of the system as revealed by the negative values of
both DH and DS.

Figure 5. (a) Stern–Volmer plots of HSA interaction with complex 1 at various
temperatures. [HSA]¼ 3mM, kex¼ 295 nm. (b) Plot of log (F0� F)/F as a func-
tion of log [complex]. [HSA]¼ 3mM, kex¼ 295 nm.

Figure 6. Van’t Hoff plot of HSA interaction with complex 1. [HSA]¼ 3mM,
kex ¼ 295 nm.
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The far-UV CD is a useful method to determine the sec-
ondary structure of proteins (Ali & Al-Lohedan, 2016). The
far-UV CD spectra of HSA in the absence and presence of
complex 1 are given in Figure 7.

It is exhibited from the figure that the ellipticity of HSA is
decreasing in the presence of the complex. Hence, it can be
deduced that HSA partially unfolds in the presence of com-
plex 1 (Feng, Lin, Yang, Wang, & Bai, 1998).

3.2.2. DNA binding studies
UV–vis spectroscopy is an important technique to obtain the
information about ligand–biomolecule interactions.
Difference UV–vis spectra of ct-DNA and complex 1 inter-
action are given in Figure 8. The addition of ct-DNA to com-
plex 1 causes slight hypochromism in the spectra.

The changes in the absorbance at 278 nm were utilized
to calculate the apparent association constant, Kapp, of 1 and
ct-DNA interaction

1
Aobs � A0

¼ 1
Ac � A0

þ 1
Kapp Ac � A0ð Þ ct � DNA½ � (1)

A graph of 1/(Aobs – A0) versus 1/[ct-DNA] yielded a
Benesi–Hildebrand (B–H) plot with a slope equal to 1/Kapp
(AC – A0) and an intercept equal to 1/(AC – A0). From the
plot, the values of Kapp were found to be 1.85 � 104 M�1.

From the collective information obtained from the DAPI
and EtBr displacement assays (Figure 9), it is proposed that
complex 1 is bound at the interfacial region of minor groove
and intercalation site.

3.2.3. Cytotoxicity assay
The percent viability of cells is exposed to different concen-
trations of complex 1 and ruthenium dimer (R) (5.0–50.0
mM). The IC50 value estimated at 24 h post treatment in
MCF-7 for complex 1 is about 25.0 mM and for R is �400
mM. A significant (p < 0.05) decrease in the cell viability was
observed which was also concentration dependent. At the
highest concentration of 50.0 mM, cell proliferation was inhib-
ited by 77 and 59% with complex 1 and R (ruthenium salt)
treatment, respectively. While at the lowest concentration of
5.0 mM, 79 and 88% cell growths were registered for com-
plex 1 and R treatment, respectively. These data suggest

Table 1. Stern–Volmer quenching constants, binding parameters, and thermodynamic parameters for the interaction of HSA with complex 1
at various temperatures.

T (K)

Stern–Volmer quenching constants Binding parameters Thermodynamic parameters

Ksv (M
�1) Kq (M

�1s�1) R2 n K (M�1) R2 DG (KJ mol�1) DH (KJ mol�1) DS (J mol�1 K�1)

288 1.97� 105 3.45� 1013 0.9924 1.1 13.6� 105 0.9996 �36.87 �187.27 �504.69
298 1.25� 105 2.19� 1013 0.9247 1.1 12.0� 105 0.9529 �31.82
308 1.20� 105 2.10� 1013 0.9921 0.9 1.1� 105 0.9921 �26.78

kex ¼ 295 nm.

Figure 7. Far-UV CD spectra of HSA in the presence of complex 1 at 25 �C and
pH 7.4. [HSA]¼ 3 mM.

Figure 8. (a) UV–visible absorption spectra of ct-DNA (30mM) in the presence
of increasing concentrations of complex 1 (0–30.0mM) at 25 �C. (b)
Benesi–Hildebrand plot.
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that complex 1 induced a higher cytotoxicity in MCF-7 cells
as compared to standard drugs (cisplatin IC50 = 28 ± 0.6 lM,
Morais et al., 2012). Ruthenium complexes reported earlier
exhibited IC50 values against MCF7 cell line, [Ru(bpy)2 p-
CPIP]2þ, IC50 = 64.4 lM; [Ru(bpy)2 p-NPIP]2þ, IC50 = 86.5 lM;

[Ru(phen)2 p-NPIP]2þ, IC50 = 38.9 lM (Perdisatt et al., 2018)
in comparison to complex 1 that exhibited significantly
good activity.

3.2.4. Morphological change analysis
To evaluate typical morphological changes in MCF-7 cells
brought by complex 1, cells were treated with two concen-
trations below IC50 value for complex 1 (5.0 and 10.0 mM) for
24 h. Figure 10 shows inverted microscopic images of mor-
phological alterations observed in MCF-7 cells. The untreated
control cells (Figure 10(a)) reached about 95–100% conflu-
ence contained in a typical shape and was found attached to
the surface. Conversely, in the treated cells, the cells are
found to lose the morphology of the normal epithelial cell ,
becomes elongated, and some of them found in a swelled
condition. A significant decrease in cell population was
observed in complex 1-treated MCF-7 cells (Figure 10(b,c)).

3.2.5. Detection of apoptosis by flow cytometry
The percentages of early and late apoptotic and necrotic
cells were measured using flow cytometry to quantify the
levels of detectable phosphatidylserine on the outer mem-
brane of apoptotic cells (Evens et al., 2004). Representative
results in the form of dot plots are presented in Figure 11.

The treatment of MCF-7 with complex 1 revealed that a
significant decrease (p < 0.05) in the population of viable
cells and an increase in the percentage of apoptotic cells
were observed. While in the untreated control, the only small
percentage of apoptotic cells was observed (Figure 11(a)). As
seen in Figure 11, when MCF-7 cells when treated with 1,
the percentage increase in the early apoptotic cells observed
from 7.2% in 5.0 mM to 14.2% in 10.0 mM . whereas it late
apoptotic cells decreases from 9.5 and 7.8% in 5.0 and 10.0
mM, respectively (Figure 11(b,c)).

3.2.6. Apoptotic morphological changes in MCF-7 cells
MCF-7 cells were exposed to complex 1 for 24 h as men-
tioned above and stained with acridine orange/ethidium
bromide (AO/EB) dye to test if the increase in cell death was
due to apoptosis (Figure 12).

AO/EB staining facilitates characteristic features of
the apoptotic nucleus such as shrinkage of the nucleus,
giving rise to fragmentation and condensation of the DNA.
Around 93.7% of viable cells were prominently evident in
untreated MCF-7 cells. Control cells showed a uniformly
distributed green fluorescence (AO stain) with no morpho-
logical changes and no red fluorescence (Figure 12(a)). The
percentage of viable cells, however, decreased significantly
(p < 0.05) in both the treatments. As shown in Figure
12(b–d), quantification of apoptotic and necrotic cells in a
total of 300 cells in each group was performed which
revealed that complex 1 treatment induced the highest
percentage of apoptotic cells (26.2%). The MTT assays, AO/
EB staining, and flow cytometry analysis showed similar
concentration and time-dependent effects on MCF-7 cells.
There was a difference in the percentage of viable cells

(a)

(b)

(c)

Figure 9. (a) Fluorescence titration of CT-DNA and DAPI complex with complex
1. (b) Fluorescence titration of EtBr and ct-DNA with complex 1. (c) CD spectra
of DNA in the absence and presence of complex 1. The concentration of
[DNA]¼ 30mM and [complex]¼ 10mM.
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because MTT is based on mitochondrial function assays
that detected cell death earlier than others, while apop-
tosis is indicating assays (AO/EB and flow cytometry)
detected cell death later in the process, which is in correl-
ation with other reports (�Cur�ci�c et al., 2012; Oh, Livingston,
Smith, & Abrishamian-Garcia, 2004). The AO/EB method
improves the detection of apoptosis and can distinguish
between late apoptotic and dead cells (Liu, Liu, Liu, &
Wu, 2015).

4. Conclusion

A new methodology was adopted for the search of the
potential new drug with known bioactive compounds. In
our studies, we have designed and synthesized a new

potential metallodrug with the use of sodium diclofenac
(an anti-inflammatory drug) as bioactive ligand and coordi-
nated it with the metal core, i.e., ruthenium(p-cymene)
with known anticancer properties. The binding propensity
of the ruthenium complex 1 with model protein (HSA) and
ct-DNA was investigated. The ruthenium complex 1 bind-
ing results exhibited significant binding propensity via an
interfacial binding mode. Furthermore, the ruthenium
complexes were studied for cytotoxicity against MCF-7
(breast cancer cell lines), and the IC50 values are compared
with the standard drug cisplatin, and earlier reported
ruthenium complexes and ruthenium complex 1 exhibited
significantly good activity. From these experimental data,
we infer that the ruthenium complex 1 possesses the
potential to act as an anticancer agent. The results warrant

Figure 10. Phase contrast inverted microscopic observation of MCF-7 cells for morphological alterations induced by complex 1 (b,c). untreated: (a) Control,; treated
(b) 5.0 mM of 1 and (c) 10.0 mM of 1. Magnification: 100X.

Figure 11. Flow cytometric analysis of MCF-7 cells exposed to different concentrations of complex 1 (b,c) for 24 h. Representative dot plots showing the percent-
age of viable cells, early apoptosis, late apoptosis, and necrotic cells: (a) control, (b) 5.0mM, (c) 10.0mM, and (d) bar diagrams showing the percentage of apoptosis
observed by flow cytometric analysis of MCF-7 cells. All data are expressed as mean ± SE. �Significant (p< 0.05) compared with controls.
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further detailed investigations, and we anticipate that our
findings of drug designing will contribute to the search of
new anticancer drugs.
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