Roots of Scientific Inquiry

RHS 481

Lecture 2

Dr. Einas Al-Eisa

Research design

 the process in which the investigators determine how they can best answer their research questions

Research problem ——————
 Research design —————
 Data analysis

Gathering counts or measurements

If a phenomenon can be measured ———
 It can be understood

Objective :

- to exist independent of thought or outside the mind
- unanimous agreement

Subjective:

- to be dependent on thought or to exist in the mind
- varying degrees of agreement

Science is concerned with truth or reality

Quantitativeness is OBJECTIVITY

 If you have quantitative data, you can use statistics to describe and interpret your data

 Statistics = applied mathematics by which you can make conclusions with increased assurance of being correct (a valuable tool for helping us to make correct decisions)

Basics of Data

 Datum = single observation, single value, or single measurement

 Data = more than one datum (collections of single observations)

 Science deals with data (not with single isolated observation that does not provide sufficient evidence)

Basics of Data

 Data are dependent on the research question and the measuring instrument

Vary from one study to the other

Can be quantitative or qualitative

Basics of Data

A variable:

- >measurable characteristic, trait, or property
- Some characteristic that takes different forms within a study (opposite to a *constant* which takes only one form)

 If differences between ROM values for men and women are studied, then gender is a variable

 If ROM values are measured for women only (or men only), then gender is a constant

Variables

Independent variable =
Presumed cause
(factor)

Dependent variable = Presumed effect (outcome)

 Research question: "how effective is ultrasound in the treatment of knee pain?"

 Independent variables: ultrasound parameters

 Dependent variable: knee pain (visual analogue pain scale)

Research purposes

 Description of a phenomenon (descriptive research)

2. Analysis of relationships

3. Analysis of **difference** between groups or treatments

 Topic: functional recovery after total knee replacement (TKR), so the purpose can be one of three:

 To describe the functional status of patients at various intervals after TKR

- 2. To examine the *relationship* between preoperative factors (gait velocity, quadriceps strength) and functional status at intervals after TKR
- 3. To examine the *differences* in functional recovery between a group of patients who received individualized postoperative exercise program versus another group who participated in a group exercise program

Timing of Data Collection

 Retrospective: in which the researcher uses data collected before the research question was developed

 Prospective: in which the researcher completes data collection after the research question is developed

- Research Purpose: to describe the functional status of patients after TKR
 - > Retrospective: by extracting functional recovery data from medical records
 - ➤ **Prospective**: by setting up a data collection protocol to gather functional recovery data at specific intervals after TKR

Research manipulation

- Experimental research: involves controlled manipulation of subjects. Example:
 - Analysis of difference with manipulation

- Non-experimental research: does not involve any manipulation. Example,
 - Descriptive research
 - Analysis of relationships

Experimental research

Truly experimental research (*Randomized clinical trials*): research that is with high level of control

- Quasi-experimental research:
 - Less control (subjects act as their own control)
 Or:
 - Multiple groups where subjects are <u>not</u> randomly assigned

 Measuring pain before and after real ultrasound (treatment) or sham (placebo) in 2 groups of patients

- ➤ Manipulation: true ultrasound versus sham
- ➤ Randomization: assignment of subjects into groups (1- treatment group, 2- control group)
- ➤ Control: standardized ultrasound variables

Types of control in research

Five types of control are common:

- 1. Control of the implementation of the independent variable:
 - The investigator must have a rationale to govern the implementation of the variable and a mechanism to monitor the implementation

1. Control of the implementation of the independent variable: Example

- Problem: effect of heat on R.O.M of the low back ———— The use of heat must be standardized:
 - ➤ Does heat mean hot pack, ultrasound, or other modality?
 - ➤ If hot pack, should all hot packs be the same size, or adjusted to the size of the patient?
 - ➤ If ultrasound, what is the duration and frequency? Area of application?

2. Control of subject selection

- Inclusion / exclusion criteria: for admission of subjects to the study
 - Example: age, gender, pain (chronic or acute)
- Homogeneous sample: tight selection criteria reducing the variability between subjects

 Heterogeneous sample: broad selection criteria increasing the variability between subjects

3. Control of extraneous variables

- Extraneous or confounding variables = factors that may influence the dependent variable (other than the independent variable)
 - Example: temperature, time of the day for testing, lighting

 You must rule out the effect of the confounding variables (related to the setting & subjects)

4. Control of measurement

- Reliability (consistency) = the degree to which test scores are free from error
 - > Instrument reliability = measurement error
 - ➤ Intra-rater reliability = consistency with which one rater assigns scores to the same thing on two occasions
 - > Inter-rater reliability = consistency among different raters in assigning scores to the same thing
 - ➤ Intra-subject reliability = related to change in subject performance from time to time

4. Control of measurement

Validity:

➤ the appropriateness and usefulness of the specific inferences made from test scores

the extent to which the conclusions of research are believable and useful

5. Control of information given to subjects & researchers

- Incomplete information: about the purpose of the study to control the effect of expectations (BUT be aware of ethics)
- Subject blinding: to withhold information about which of several treatments the patient is receiving (not applicable to physical therapy)
- Researcher blinding: to the treatment received by the patients, to control the effect of the researcher expectations

5. Control of information given to subjects & researchers

➤ Single-blind study: either the subject <u>OR</u> the researcher is blind to the treatment or group assignment

➤ Double-blind study: both subject and researcher are blind