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Introduction
Most of quantum gravity programmes predict that the spacetime admits a minimal length scale.
Therefore , there is a maximal energy EP that can be put into a system. This basic, yet important
and universal prediction of quantum gravity programmes leads to phenomenological investigation of
quantum gravity. The deformation of desperation relations is made by gravity’s rainbow [13], where
different wavelengths of light ( having different energies) experience gravity differently. More gener-
ally, gravity is energy-dependent phenomena. In this research we will study the rainbow deformation
of rotating Kaluza-Klien black holes. In gravity’s rainbow, the geometry depends on the energy of
the probe, and thus probes of of different energy see the geometry differently. Thus, a single metric
is replaced by a family of energy dependent metrics forming a rainbow of metrics. Now the UV
modification of the energy-momentum dispersion relation can be expressed as

E2f2(E/EP )− p2g2(E/EP ) = m2 (1)

where EP is the Planck energy, E is the energy at which the geometry is probed, and f (E/EP ) and
g(E/EP ) are the rainbow functions. The deformation of geometry by the rainbow functions has been
studied extensively, [2, 3]. Gravity’s rainbow has also been used to address the black hole informa-
tion paradox [5]. In this research, we study deformed rotating Kaluza-Kleinblack hole by the rainbow
functions, and investigate its thermodynamic properties.

Kaluza Klein Black Holes
Kaluza-Klein black holes are a 5d uplifted solution of rotating black holes with electric Q and mag-
netic P charges [8, 15, 12]. This is a general solution to the dyonic solution (where Q = P ). This
solution is considered from the 4d Einstein-Maxwell-dilaton theory [14], or as a rotating D0-D6
bound state in string theory [10]. The KK solution in 5d pure Einstein gravity has the following
metric:
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Where: H1, H2 A and B are functions of four parameters p, q, j and µ. With R being the radius of the
compactified fifth K-K dimension ŷ with the condition ŷ = ŷ+2π. There are four physical parameters
that characterises the rotating K-K black hole, the mass M , electric and magnetic charges Q,P and
the angular momentum J . They are given in terms of the parameters µ, q, p and j :
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The Hawking temperature is then:
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Using the relation dS = dM/T we can obtain the entropy:
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K-K black holes in gravity’s rainbow
The rotating K-K black hole is deformed by the rainbow functions discussed earlier where E is the
energy of a ‘ quantum’ particle near the outer horizon r̂ ∼ r+. In order to estimate E, we may use
the uncertainty relation for position and momentum , and write ∆p ≥ 1/∆x. Thus, we can obtain
a bound on energy of a black hole, E ≥ 1/∆x [4]. It should be noted that this uncertainty relation
holds for the rotating K-K black hole like any other 4-D black hole, in gravity’s rainbow [1] we write,
E ≥ 1/∆x ≈ 1/r+. One may define the rainbow functions f (E) and g(E) in many ways, However,
in this study these functions are chosen such that they are compatible with loop quantum gravity and
non-commutative geometry [7, 11].

f (E) := 1 g(E) :=
√

1− η(E/Ep)ν, (7)

Here, η and ν are free parameters. Now, we use (5), and (7) to obtain the formula for the modified
temperature :
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Figure 1: Ordinary (left) and deformed (right) Hawking temperatures of different rotating K-K black holes( fixed Q,P
and J) as a function of their mass M . We set Ep = 5, η = 1 and ν = 2. The remnant can be observed at the same point
for all deformed black holes.

Similarly, the deformed entropy is calculated from the integral S =
∫ dM

T , it is found to be given by
the Hypergeometric functions 2F1(a, b; c; d),
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Figure 2: The deformed entropy of different rotating K-K black holes( fixed Q,P and J) as a function of their mass
M .We set Ep = 5, η = 1 and ν = 2. The remnant can be observed at the same point for all deformed black holes

It is interesting to look at the criticality of rotating K-K black holes and their rainbow deformation,
this can be done by studying the Gibbs free energy of this black hole. The Gibbs free energy is gen-
erally given by G(M,J,Q, P ) = M − TS For the ordinary rotating K-K black hole it is found to
be
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Figure 3: A plot of the ordinary(left) and deformed (right) Gibbs free energy G(T, J, , Q, P ) rotating K-K black hole
with fixed Q,P . Showing similar critical phenomena. We have set η = 1, Ep = 5 and ν = 2 for the deformed one.

The deformed Gibbs free energy is calculated:
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Both ordinary and deformed rotating K-K black holes show critical behaviour as the study of Gibbs
free energy, if G > 0 the black hole is said to be ‘ critical’ and when G < 0 it is said that the black
hole is uncritical.

Conclusions
In this research, the geometry of 5-D rotating Kaluza Klein black holes with electric and magnetic
charges was deformed by the rainbow functions f, g motivated by loop quantum gravity and non-
commutative geometry. Resulting a deformation on the thermodynamics of the 4D rotating K-K
black hole. The deformed temperature and entropy indicate the existence of a remnant after the decay
of the black hole to a ‘ Plankckian’ scale. Moreover, the critical behaviour of this black hole was
studied via calculating its Gibbs free energy, the ordinary and the deformed black holes appear to
show the same critical behaviour.
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