College of Sciences
 Department of
 Statistics and Operations
 Research

First Midterm Exam

Sunday, March 3, 2019	STAT 105	Academic year 2018-2019
7:00-8:30 pm		Second Semester
Student's Name		
ID number		
Section No.		
Classroom No.		
Teacher's Name		
Roll Number		

Instructions:

\diamond Switch off your mobile and place it under your seat.
\diamond Time allowed is 90 Minutes.
\diamond Do not copy answers from your neighbors. They have different questions forms.
\diamond Choose the nearest number to your answer.
\diamond Do not use pencils or red pens.
\diamond For each question, put the code (Capital Letters) of the correct answer in the following table beneath the question number.

1	2	3	4	5	6	7	8	9	10
C	B	C	D	B	C	C	C	B	A
11	12	13	14	15	16	17	18	19	20
D	C	B	C	D	B	D	B	D	A
21	22	23	24	25	26	27	28	29	30
D	B	C	D	A	B	D	C	B	A

Questions (1): The battery failure time, measured in hours, has a probability density function:

$$
f(x)= \begin{cases}\frac{2}{(x+1)^{3}}, & x>0 \\ 0, & \text { otherwise }\end{cases}
$$

1) The probability that a battery lasts more than five hours is

A	B	C	D
$4 / 9$	$1 / 2$	$1 / 36$	$2 / 5$

Questions (2-3): A random variable X has a probability density function:

$$
f(x)= \begin{cases}\frac{1}{6}, & x \in\{1,2,3,4,5,6\} \\ 0, & \text { otherwise }\end{cases}
$$

2) The expected value of $X, E(X)$ is equal to

A	B	C	D
2	3	5	1

3) The variance of $X, V(X)$ is equal to

A	B	C	D
1	2	3	4

Questions (4): Let X be a normal random variable with mean 30 and variance 36.
4) $\mathbf{P}(32<X<38)$ is equal to

A	B	C	D
0.485	0.342	0.156	0.279

Questions (5): Let X be an exponential random variable with mean $\frac{1}{\lambda}=5$.
5) $\mathbf{P}(7<X)$ is equal to

A	B	C	D
0.524	0.246	0.178	0.425

Questions (6): Let X be an exponential random variable with mean 10 and standard deviation 2.
6) The value of x with 9% of the area to its left is

A	B	C	D
5.33	2.75	7.32	1.85

Questions (7-8): The random variable T follows the exponential distribution with mean time to failure is 6 years.
7) The probability that it is still functioning at the end of 10 years is

A	B	C	D
0.211	0.167	0.189	0.231

8) If 4 of these components are installed in different systems. The probability that at least 1 is still functioning at the end of 10 years is

A	B	C	D
0.214	0.133	0.567	0.312

Questions (9): The television picture tubes of manufacturer A have a mean lifetime of 5.5 years and a standard deviation of two years, while those of manufacturer B have a mean lifetime of 5 years and a standard deviation of 1.5 year.
9) The probability that a random sample of 40 tubes from manufacturer A will have a mean lifetime that is 1 year more than the mean lifetime of a sample of 50 tubes from manufacturer B is

A	B	C	D
0.024	0.0951	0.102	0.25

Questions (10): Let T be a student random variable.
10) The probability $\mathbf{P}\left(-t_{0.25}<T<t_{0.5}\right)$ is

A	B	C	D
0.25	0.35	0.15	0.05

Questions (11-12): Let X be a Chi-squared random variable.
11) Find \mathcal{X}_{α}^{2} such that, The probability $\mathbf{P}\left(\mathcal{X}_{\alpha}^{2}<X<2.204\right)=0.075$ with $\nu=6$

A	B	C	D
0.505	0.325	0.054	1.237

12) Find \mathcal{X}_{α}^{2} such that, The probability $\mathbf{P}\left(\mathcal{X}_{\alpha}^{2}<X\right)=0.075$ with $\nu=5$

A	B	C	D
5.125	6.532	2.675	4.521

Questions (13-14): Let F be a Fisher random variable.
13) The $f_{0.95}$ with $\nu_{1}=15$ and $\nu_{2}=15$

A	B	C	D
0.3333	0.4167	0.1543	0.2578

14) The $f_{0.99}$ with $\nu_{1}=19$ and $\nu_{2}=3$

A	B	C	D
0.3212	0.4512	0.1996	0.2141

Questions (15-17): Suppose that 20 percent of adults of a male population were obese. In a simple random sample of size 200 from this population
15) The mean of the proportion \widehat{P} of adults in this sample who were obese is

A	B	C	D
0.5	0.7	0.1	0.2

16) The variance of the proportion \widehat{P} of adults in this sample is

A	B	C	D
0.0052	0.0008	0.0134	0.1022

17) The probability that the proportion \widehat{P} in this sample who are obese is fewer than 15 percent is

A	B	C	D
0.0452	0.0848	0.0152	0.0384

Questions (18-20): Suppose that there are two high schools, in a certain town. At School 1, 55% of students did their homework last night. Besides, 65% of the students at School 2 did their homework last night. The counselor at School 1 takes a simple random sample of 100 students and records the proportion that did the homework \widehat{P}_{1}. School 2 counselor's takes a simple random sample of 150 students and records the proportion that did the homework \widehat{P}_{2}.
18) The standard deviation of the difference $\widehat{P}_{2}-\widehat{P}_{1}$ is

A	B	C	D
0.251	0.0632	0.1588	0.0025

19) The sampling distribution of the difference $\widehat{P}_{2}-\widehat{P}_{1}$ is

A	B	C	D
t	\mathcal{X}^{2}	F	$N(0,1)$

20) The probability of getting a difference $\widehat{P}_{2}-\widehat{P}_{1} \geq 0.05$ is

A	B	C	D
0.785	0.251	0.512	0.315

Questions (21-26): Let X be a random variable that has the following probability function

X	-1	1	2	3
$f(x)$	0.1	0.2	0.4	0.3

21) $\mathbf{P}(-1<X<3)$ is equal to:

A	B	C	D
0.1	0.2	0.5	0.6

22) $\mathbf{P}(-1 \leq X \leq 2)$ is equal to:

A	B	C	D
0.9	0.7	0.3	0.4

23) $\mathbf{P}(0 \leq X<2)$ is equal to:

A	B	C	D
0.6	0.8	0.2	0.5

24) $\sum_{k \in\{-1,1,2,3\}} \mathbf{P}(X=k)$ is equal to:

A	B	C	D
2.5	1.1	1.3	1

25) The mean $\mu=E(X)$ is equal to:

A	B	C	D
1.8	2.1	1	1.5

26) The variance σ^{2} is equal to:

A	B	C	D
2.11	1.36	1.22	3.16

Questions (27): A dice (a cube with six faces, on each face a number from 1 to
6) is tossed once.
27) The probability of getting a number less than 3 is

A	B	C	D
$2 / 3$	$1 / 5$	$3 / 5$	$1 / 3$

Questions (28-29): The probability that a patient recovers from a rare blood disease is 0.4 . If 5 people are known to have contracted this disease.
28) The probability that at most 2 will survive this disease.

A	B	C	D
0.258	0.134	0.683	0.912

29) The expected number of survivors from this disease is

A	B	C	D
5	2	1	8

Questions (30): The traffic accidents in a city follows a Poisson distribution with rate of 2 accidents every hour.
30) The probability that in certain hour there will be four accidents is

A	B	C	D
0.09	0.006	0.201	0.512

