College of Sciences
Statistics and Operations

Second Midterm Exam

Sunday, 20 Rabee I, 1441	STAT 105	Academic year $1440-1441$
$7: 00-8: 30 ~ p m$		First Semester
Student's Name	ID number	
Section No.	Serial No.	
Teacher's Name	Classroom No.	

Instructions:

- Switch off your mobile and place it under your seat.
- Time allowed is 90 Minutes.
- Do not copy answers from your neighbors. They have different sets of questions.
- Choose the nearest number to your answer.
- Do not use pencils or red pens.
- For each question, put the code (A, B, \cdots Capital Letters, and clear) of the correct answer in the following table beneath the question number.

1	2	3	4	5	6	7	8	9	10
D	D	C	D	B	D	B	D	D	B
11	12	13	14	15	16	17	18	19	20
D	D	C	A	C	C	B	D	D	B
21	22	23	24	25	26	27	28	29	30
C	A	D	B	D	C	C	C	D	A

Questions (1-3): An experiment reported in Popular Science compared fuel economies for two types of similarly equipped diesel mini-trucks. Let us suppose that 31 Volkswagen and 25 Toyota trucks were tested in 90-kilometer-per-hour steady- paced trials. If the 31 Volkswagen trucks averaged 15 kilometers per liter with a standard deviation of 1.5 kilometers per liter and the 25 Toyota trucks averaged 10 kilometers per liter with a standard deviation of 1.0 kilometer per liter. Assume that the distances per liter for the truck models are approximately normally distributed with equal variances.

1) The point estimate of $\left(\frac{\sigma_{1}}{\sigma_{2}}\right)^{2}$ is equal to:

A	B	C	D
1.50	1.75	2.00	$\underline{2.25}$

2) The lower bound of the 98% confidence interval of $\left(\frac{\sigma_{1}}{\sigma_{2}}\right)^{2}$ is equal to:

A	B	C	D
0.025	0.125	0.225	$\underline{0.872}$

3) The upper bound of the 98% confidence interval of $\left(\frac{\sigma_{1}}{\sigma_{2}}\right)^{2}$ is equal to:

A	B	C	D
3.027	1.675	$\underline{\underline{5.557}}$	4.015

Questions (4-11): Two kinds of thread are being compared for strength. Fifty pieces of Brand A and fifty-five of Brand B of thread are tested under similar conditions. Brand A has an average tensile strength of 80 kilograms with a standard deviation of 6 kilograms, while brand B has an average tensile strength of 95 kilograms with a standard deviation of 8 kilograms. To construct a 95% confidence interval for the difference of the population means.
4) The standard error of the mean of Brand B is:

A	B	C	D
1.529	1.635	1.721	$\underline{1.08}$

5) The lower bound of 95% confidence interval for the mean of Brand B is:

A	B	C	D
100.21	$\underline{92.89}$	111.12	114.54

6) The upper bound of 95% confidence interval for the mean of Brand B is:

A	B	C	D
100.12	89.22	92.31	$\underline{97.11}$

7) The point estimate of the difference between the two population's means $\mu_{B}-\mu_{A}$ equals to:

A	B	C	D
25	$\underline{15}$	27	18

8) The tabulated value (critical point) for the 96% ci equals to:

A	B	C	D
1.65	2.58	3.25	$\underline{2.05}$

9) The standard error of the difference between the two sample's means $\sigma_{\bar{X}_{B}-\bar{X}_{A}}$ equals to:

A	B	C	D
2.45	1.64	3.24	$\underline{1.37}$

10) The lower bound of the 95% confidence interval of the difference between the two population's means $\mu_{B}-\mu_{A}$ equals to:

A	B	C	D
10.21	$\underline{12.31}$	11.12	14.54

11) The upper bound of the 95% confidence interval of the difference between the two population's means $\mu_{B}-\mu_{A}$ equals to:

A	B	C	D
15.12	19.22	12.31	$\underline{17.69}$

Questions (12-15): A survey of 500 students found that 240 chose professional baseball team A as their favorite team. In a similar survey involving 1000 students, 250 of them chose team A as their favorite, then:
12) The point estimate of the difference between the two population's proportions equals to:

A	B	C	D
0.15	0.51	0.32	$\underline{0.23}$

13) The tabulated value for the 98% confidence interval equals to:

A	B	C	D
2.65	1.96	$\underline{2.33}$	1.35

14) The lower bound of the 95% confidence interval of the difference between the two population's proportions is equal to:

A	B	C	D
$\underline{0.179}$	1.011	2.125	1.645

15) The upper bound of the 95% confidence interval of the difference between the two population's proportions is equal to:

A	B	C	D
0.064	0.111	$\underline{0.281}$	0.325

Questions (16-19): Data are collected from a random sample of 500 subscribers. The results indicate that 100 of the subscribers would upgrade to a new service at a reduced cost. Test $\mathrm{p}<0.23$ at $\alpha=0.05$.
16) The critical region (rejection region) is:

A	B	C	D
>-1.645	<1.645	≤-1.645	>1.645

17) The alternative hypothesis H_{1} is:

A	B	C	D
$p \geq 0.23$	$p<0.23$	$p>0.23$	$p \leq 0.23$

18) The test statistic is:

A	B	C	D
-1.645	1.645	1.59	$\underline{-1.59}$

19) The decision is:

A	B	C	D
all of them	can not decide	reject H_{0}	accept H_{0}

Questions (20-23): The life in hours of a battery is known to be approximately normally distributed, with standard deviation $\sigma=1.5$ hours. A random sample of 9 batteries has a mean life of $\bar{x}=41$ hours. Test the claim that battery life exceeds 40 hours, using $\alpha=0.05$.
20) The alternative hypothesis H_{1} is:

A	B	C	D
$\mu \geq 40$	$\mu<40$	$\mu>40$	$\mu \leq 40$

21) The critical region (rejection region) is:

A	B	C	D
on the left.	on the right	on the middle.	on both sides.

22) The sampling distribution of \bar{x} is:

A	B	C	D
normal.	F.	Student-t.	chi-square.

23) The decision is:

A	B	C	D
accept H_{0}	all of them	can not decide	reject H_{0}

Questions (24-26): Two independent samples were taken from two populations with means μ_{1} and μ_{2}, respectively, resulted in the following :

Sample i	\bar{x}_{i}	n_{i}	σ_{i}
1	36	35	6
2	39	40	8

Is μ_{1} smaller than μ_{2} at $\alpha=0.05$?
24) The test statistic equals:

A	B	C	D
1.53	$\underline{-1.85}$	-1.53	1.85

25) The critical value equals:

A	B	C	D
-2.11	-2.38	-1.96	$\underline{-1.64}$

26) The decision is:

A	B	C	D
accept H_{0}	all of them	reject H_{0}	can not decide

Questions (27-30): In a random sample of 25 observations, from a normal distribution it was found that the standard deviation equals 7, is it possible at $\alpha=$ 0.05 , that the standard deviation is less than 9 ?
27) The critical region (rejection region) equals:

A	B	C	D
<15.22	>15.22	≤ 13.85	>13.85

28) The p-value is:

A	B	C	D
0.001	0.033	$\underline{0.066}$	0.025

29) The test statistic equals:

A	B	C	D
39.67	18.67	30.85	$\underline{14.52}$

30) The decision is:

A	B	C	D
accept H_{0}	reject H_{0}	all of them	can not decide

