Department of Statistics & Operations Research College of Science King Saud University STAT – 106: Biostatistics Final Examination First Semester 1437 – 1438

Student's Name	
Student's Number	
Section's Number	Serial Number :
Teacher's Name	

Instructions:

- There are 40 multiple choice questions.
- Time allowed is 120 minutes. (2 *Hours*).
- For each question, put the code of the correct answer in the following table beneath the question number. Please, use capital letters: A, B, C, and D.
- Do not copy answers from your neighbors; they have different question forms.
- Mobile Telephones are **<u>not allowed</u>** in the classroom.

1	2	3	4	5	6	7	8	9	10
В	А	А	В	D	А	D	В	A	D

11	12	13	14	15	16	17	18	19	20
С	В	D	С	A	В	С	В	D	В

21	22	23	24	25	26	27	28	29	30
A	В	С	В	В	В	С	С	В	В

31	32	33	34	35	36	37	38	39	40
D	С	D	С	В	А	D	В	В	А

Good luck

Suppose that the hemoglobin levels (in g/dl) of healthy Saudi females are approximately normally distributed with mean of 13.5 and a standard deviation of 0.7. If 15 healthy adult Saudi female is randomly chosen, then:

(1) The mean of \overline{x} ($E(\overline{x})$ or $\mu_{\overline{x}}$) is: (A) 0.7 (B) 13.5 (C) 15 (D) 3.48 (2) The standard error of $\overline{\mathbf{x}}$ $(\sigma_{\overline{x}})$ is: (A) 0.181 (B) 0.0327 (C) 0.7 (D) 13.5 (3) $P(\overline{X} < 14) =$ (A) 0.99720 (D) 0.971 (B) 0.99440 (C) 0.76115 (4) $P(13 < \overline{X} < 14) =$ (A) 0.9972 (B) 0.9944 (C) 0.7615 (D) 0.5231

> A sample of 16 college students were asked about time they spent doing their homework. It was found that the average to be 4.5 hours. Assuming normal population with standard deviation 0.5 hours.

(5) The point estimate for μ is:
(A) 0 hours(B) 10 hours(C) 0.5 hours(D) 4.5 hours(6) The upper limit of 95% confidence interval for μ is:
(A) 4.745(B) 4.531(C) 4.832(D) 4.891

A random sample of 16 adults drown from a certain population of adults yielded a mean weight of 63 kg with sample variance of 64 kg. Assume that the weights in the population are approximately normally distributed. Do the sample data provide sufficient evidence for us to conclude that the mean weight for the population is different than 59 kg. Use $\alpha = 0.05$.

(7) The hypothesis is: (A) $H_0: \mu \ge 59$, $H_A: \mu < 59$ (B) $H_0: \mu \le 59$, $H_A: \mu > 59$ (C) $H_0: \mu \ne 59$, $H_A: \mu = 59$. (D) $H_0: \mu = 59$, $H_A: \mu \ne 59$ (8) The computed value of the test statistic is: (A) 7.2 (B) 2.0 (C) 0.5 (D) 1.6 (9) Your decision is: (A) Accept H_0 . (B) Reject H_0 (10) The 99% confident interval for mean μ is (A) (57.84, 68.16) (B) (59.08, 66.92) (C) (58.34,67.66) (D) (57.11, 68.89)

≻ A rese	archer was i	nterested in compari	ing the mean score of fer	nale students μ_1 , with the mean
score of	male studen	ts μ_2 in a certain t	test. Assume the popula	tions of score are normal with
equal var	iances. Two	independent sample	es gave the following res	ults:
-			Female	male
	Sample siz	ze	n ₁ = 5	$n_2 = 7$
	Mean		$\bar{x}_1 = 82.63$	$\bar{x}_2 = 80.04$
	Variance		$s_1^2 = 15.05$	$s_2^2 = 20.79$
(11) T	he point est	imate of $\mu_1 - \mu_2$ is	:	
(A) 2.	63	(B) -2.37	(C) 2.59	(D) 0.59
(12) T	he estimate	of the pooled varia	nnce (s_p^2) is:	
(A) 17	.994	(B) 18.494	(C) 17.794	(D) 18.094
(13) T	he upper lii	nit of the 95% conf	fidence interval for μ_1 ·	$-\mu_2$ is:
(A) 26	5.717	(B) 7.525	(C) 7.153	(D) 8.2
(14) T	he lower lin	nit of the 95% conf (D) 2.245	idence interval for μ_1 -	$-\mu_2$ is:
(A) -2	21.54	(B) - 2.345	(C) - 5.02	(D) -1.973
• <u>In th</u>	<u>ie same que</u>	estion, test at level o	a = 0.05 the doubt that	μ ₁ and μ ₂ are different, then
(15) T	he hypothe	ses are :		
(A) H	$\mu_1 = \mu_2$	(B) $H_0 \mu_1 = \mu_2$	$(C)H_0$, $\mu_1 < \mu_2$	$(D)H_{\alpha}\mu_{1}\leq\mu_{2}$
Н	$\mu_1 \neq \mu_2$	$H_{A} H_{A} < H_{2}$		
	A. r -1 / -	11A.F-1 \F-2	11A:1-1 / 1-2	AA:F-1 / F-2
(16) T	he value of	the test statistic is:		
(A	.) 1.3	(B)1.029	(C) 0.46	(D) 0.93
(1 7) T	he accentar	ce region (AR) of I	H. is.	
(I) I. (A	(2.2281)		(B) $(-\infty - 2.2281)$	
()	(-2.2201, -3.2)	2 2281)	(D) (-1.96, 1.96)	
(C) (2.2201,	2.2201)	(D) (1.90, 1.90)	
(18) T	he decision	is:		
(A)) Reject H ₀		(B) Do not reject (Acce	pt) H _o
(C)	Accept bot	h H _o and H _A	(D) Reject both H_o and	H _A

> A standardized chemistry test was given to 50 girls and 75 boys. The girls made an average of 84, while the boys made an average grade of 82. Assume the population standard deviations are 6 and 8 for girls and boys respectively. To test the null hypothesis $H_0: \mu_1 - \mu_2 \le 0$ against the alternative hypothesis $H_A: \mu_1 - \mu_2 > 0$ at 0.05 level of significance: (19) The standard error of $(\bar{X}_1 - \bar{X}_2)$ is

(19) The standard ((A) 0.2266	(B) 2	- X ₂) is (C) 1.57	133	(D) 1.2543	
(20) The value of th (A) -1.59	ne test statistic (B) 1.59	is: (C) 1.25	5	(D) 4.21	
(21) The rejection (A) $(1.645,\infty)$ (C) $(1.96,\infty)$	region (RR) of	H ₀ is: (B) $(-\infty, -\infty)$ (D) $(-\infty, -\infty)$	-1.645) -1.96)		
 (22) The decision is (A) Reject H₀ (C) Accept both H_o → In a sample of the proportion of 	and <i>H_A</i> 80 Corona pati of survived pati	(B) Do no (D) Reject ents, the pro- ent is more	ot reject (A ct both H _c oportion c than 0.3.	Accept) H_o , and H_A of survived p Use $\alpha = 0.1$.	 atients was 0.304. Test if
(23) The point estin (A) 0.25	nate of P is eq (B) 0.80	ual to: (C) 0	.304	(D)	0.3
(24) The reliability	coefficient (z_1	<u>_</u>) is:			
(A) 1.96	(B) 1.645	(C) 2	.02	(D)	1.35
(25) A 90% confid $(A) (0.3410, 0.4421)$) (B) (0.219	for P is: 4,0.3886)	(C) (0.23	379,0.3701)	(D) (0.1293,0.3707)
(26) The hypothese (A) H₀: p≥0.3 H _A : p < 0.3	es are: (B) H₀: p ≤ H _A : p ≥	20.3 > 0.3	(C) H _o : p H _A :	o > 0.3 p = 0.3	(D) H_0 : p < 0.3 H_A : p ≥ 0.304
(27) The value of to (A) 1.96	est statistic is: (B) 0.9	(C) 0.0)78	(D)	1.65
(28) The value of	P-value is				
(A) 0.078		(B) 0.9362	. ((C) 0.4681	(D) 0.531
(29) The decision is (A) Reject H_o C) Accept both H_o are	$(B) I$ $H_A \qquad (I)$	Do not Rejec D) Reject bo	et (Accept oth <mark>H_o and</mark>	t) H _o d H _A	

In a study, it was found that 31% of the adult population in a certain city has a diabetic disease.
 100 people are randomly sampled from the population. Then
 (30) The mean for the sample properties (up or F(ii)) is:

ie sample proportio		
(B) 0.31	(C) 0.69	(D) 0.002
r the sample propo	rtion is:	
(B) 0.31	(C) 0.69	(D) 0.002
(B) 0.02442	(C) 0.0256	(D) 0.7054
	(B) 0.31 r the sample propor (B) 0.31 (B) 0.02442	(B) 0.31 (C) 0.69 r the sample proportion is: (B) 0.31 (C) 0.69 (B) 0.02442 (C) 0.0256

▶ In a first sample of 100 store customers, 43 used a MasterCard. In a second sample of 100 store customers, 58 used a Visa card. To find the 95% confidence interval for difference in the proportion $(P_1 - P_2)$ of people who use each type of credit card?

(33) The point est	timate of $(P_1 - P_2)$) is		
(A)0.43	(B) 0.58	(C)0.15	(D) -0.15	
(34) The value of	α is :			
(A) 0.95	(B) 0.5	(C) 0.05	(D) 0.025	
(35) The upper li	mit of 95% confide	nce interval for the	proportion difference	e is:
(A) 0.137	(B) -0.013	(C) 0.518	(D) 0.150	
(36) The lower lin	nit of 95% confider	nce interval for the	proportion difference	is:
(A) – 0.278	(B) 1.547	(C) 0.421	(D) -0.129	

In an experiment comparing two feeding methods (مقارنة طريقتين للتغذية) forCows, eight pairs of twins (مقارنة طريقتين للتغذية) were used. One twin receiving Method Aand the other receiving Method B. At the end of a given time ,the Cows were slaughtered and cooked ,and the meat was rated for its taste(with a higher number indicating a better taste):

		Tas	te score fo	or calves f	ed			
Twin pair	1	2	3	4	5	6	7	8
Method A	27	37	31	38	29	35	41	37
Method B	23	28	30	32	27	29	36	31

Let $\bar{d} = 4.88$ and $s_d = 2.53$ (where d = Method A – Method B). Assuming normality, to test with level $\alpha = 0.05$ if the Method A increases the taste scores:

(B) $\frac{u}{n}$	$(C)\frac{s_d}{\sqrt{n}}$	$(D)\frac{s_d}{\sqrt{n}}$
ted value of the t	est statistic is:	
(B) 5.456	(C) 1.929	(D) –1.929
is		
115	(B) Do not re	iect (Accept)H
h H_o and H_A	(D) No decis	ion
	(B) $\frac{1}{n}$ ted value of the t (B) 5.456 if (Acceptance ro (B) $t \le 1.895$ is h H_o and H_A	(B) $\frac{1}{n}$ (C) $\frac{1}{\sqrt{n}}$ ted value of the test statistic is: (B) 5.456 (C) 1.929 if (Acceptance region): (B) $t \le 1.895$ (C) $z > 1.645$ is (B) Do not region the formula of the test statistic is: (B) $t \le 1.895$ (C) $z > 1.645$ is (B) Do not region the test statistic is: (B) $t \le 1.895$ (C) $z > 1.645$ is

End of the questions