Design of Photogrammetric Flight Plan

CLO3 - Example

Flight planning is to be designed to map an area extending 60 km eastwest and 40 km north-south, using aerial photography. Produced topographic maps should have the following specifications:

Ground planimetric accuracy of 0.05 m with contour intervals (CI) 0.5 m and image motion within 0.02 mm on photo.

Available instrumentation include aerial camera with format $23 \mathrm{~cm} x$ $23 \mathrm{~cm}, 150.000 \mathrm{~mm}$ focal length lens and shutter speed of $1 / 2000 \mathrm{sec}$. and photogrammetric plotter with photo measurement accuracy of 0.01 mm and C-Factor 1600.

Minimum forward and side lap are to be 60% and 20%, respectively.
Compute design data to prepare flight plan.
Flight planning data required include:
Flying height, flight speed, film cost (23X23 10 sheets FILM - KODAK PORTRA 400 cost 120 USD).

Solution

Flying Height, H :
(i) $\mathrm{H}=\mathrm{f} /$ scale

Scale $=0.01 \mathrm{~mm} / 0.05 \mathrm{~m}=0.01 / 50=1 / 5000$ or larger
$\mathrm{H}=150 /(1 / 5000)=760000 \mathrm{~mm}=750.0 \mathrm{~m}$ or less
(ii) $\mathrm{H}=\mathrm{CI} \times \mathrm{C}-\mathrm{F}=0.5 \times 1600=800.0 \mathrm{~m}$ or less

Take $\mathrm{H}=750.0 \mathrm{~m}$ to satisfy both, keeping photo scale as it is: $1 / 5000$

Flight Speed, V:

$\mathrm{IM}=(\mathrm{V})(\mathrm{t})(\mathrm{f} / \mathrm{H})$; Hence;

$$
\begin{aligned}
\mathrm{V} & =\mathrm{IM} /[\mathrm{t} \times \mathrm{f} / \mathrm{H}]=(0.02 / 1000) /[(1 / 2000) \times 1 / 5000=200 \mathrm{~m} / \mathrm{sec} \\
& =200 \times 3600 / 1000=720 \mathbf{k m} / \mathbf{h r}
\end{aligned}
$$

To determine total fillm cost, compute total number of photographs required to cover the whole area with required forward and side laps.

Forward overlap $=60 \%$; Air base, $B=L(100 \%-60 \%)$

$$
=(23 \times 5000 / 100)(0.4)=460 \mathrm{~m}
$$

Strip length, $\mathrm{Q}=60 \mathrm{~km}$
Number of photos per strip $=(\mathrm{Q} / \mathrm{B})+1=[60 \mathrm{x} 1000 / 460]+1=131.4$ photos; Take 132 photos.

Add two photos on each side. $132+4=136$ photos
Strip width, $\mathrm{W}=40 \mathrm{~km}$
Distance between consecutive flight lines, $\mathrm{D}=\mathrm{L}(100 \%-20 \%)$

$$
=(23 \times 5000 / 100) \times 80 / 100=920 \mathrm{~m}
$$

Number of flight lines $=(\mathrm{W} / \mathrm{D})+1=[40 \times 1000 / 920]+1$

$$
=43.4+1=44.4 \text { flight lines; Take } 45 \text { flight lines (Strips) }
$$

For certain coverage, add 30% of photo lateral coverage to both ends of the area, width D will then be:

$$
D=(0.3) \times(23 \times 5000 / 100)+40000=40345 \mathrm{~m}
$$

No. of flight lines $=(40345 / 920)+1=43.8+1=44.8$, take 45 flight lines

Total number of photos to cover the area $=$
Number of photos per strip x Number of strips
$136 \times 45=6120$ photos
612 packages of 10 -sheets of film are required
Total Cost $=612 \times 120 \times 3.75 \mathrm{SR}=275400 \mathrm{SR}$

