الاختبار الفصلي الثاني الفصل الدراسي الثاني 1438/1437 مقرر 215 احص جامعة الملك سعود كلية العلوم قسم الإحصاء وبحوث العمليات

ر 7 /1438 هـ	/ 16	الخميس
--------------	------	--------

نموذج	
(B)	
	اسم الطالبة:
	رقم الطالبة :
	رقم التسلسل :
	أستاذة المقرر:

ملاحظات:

- 1) لأسئلة الاختياري سيتم تصحيح ورقة الإجابة فقط (التصحيح الآلي) فقط ولن يتم النظر إلى ورقة الأسئلة من الداخل.
 - 2) عدد أوراق الامتحان هو 4 صفحات مع الغلاف الخارجي.
 - 2) يلزمك كتابة أسمك على كلا الورقتين (الأسئلة و ورقة التصحيح الآلي).

دعواتنا لكم بالتوفيق

Q1: Choose the right answer (The first 16 questions are not related to each other)

1. If $M_X(t) = \frac{0.2e^t}{1-0.8e^t}$. Then X has the distribution a) Geom(0.8)b) Bin(8,0.2)c) Poisson(0.8) d) NBin(1,0.2) 2. Let $M_X(t) = e^{2t^2}$, then X has b) Gamma(4,2) a) U(0,2)c) Poisson(2) d) N(0,2)3. If $X_1 \sim N(0.5, 1.5)$ and $X_2 \sim N(0.5, 2.5)$ then a) X_1, X_2 have the same shape and in the same location. have the same shape but in different location. have the different shape but in the same location. d) X_1, X_2 have the different shape and in different location. 4. In a game, the player decided to play until he lose 5 times. The probability of losing any game is 0.5071. Let X the number of games until the game is stopped. Then the possible values of X are a) 0,1,2,3,4,5. b) 1,2,3,4,5 c) 1,2,3,... d) 5,6,7,... 5. In the experiment of flipping a fair coin several times. The random variable X which represent the number of heads occurs has a binomial distribution with mean 5. Then the number of trials n is b) 5 c) 0.5d) 0.25 a) 10 6. Let $X \sim H(10,3,7)$. Calculate P(X = 3) =7. $\int_0^1 x^4 (1-x)^2 dx = \frac{1}{100}$ c) 0.0003 d) 0.0122 8. Let X has a discrete uniform distribution where f(3) = 0.2. Then the number of possible values of X is b) 20 c) 10 d) 5 a) 3 9. If X has exponential distribution. Then P(X > 8 | X > 2) =c) P(X > 6)a) P(X > 8)b) P(X > 2)d) p(X < 8)10. Let $f(x) = \left(\frac{1}{4}\right) \left(\frac{3}{4}\right)^{x-1}$; $x = 1, 2, 3, \dots$ Then P(X = 3) =

c) 0.5

11. Let the continuous random variable $X \sim \text{Uinform}(-1,1)$. Find P(X < 0) =

d) 0.1406

d) 0.98

b) 0.0352

b) 0.35

a) 0.2335

a) 0.23

	a) Normal Distribution	b) Binomial Distribution	c) Poisson Distribution	d) Exponential Distribution					
	Distriction	Distriction	2100110001011	Distribution					
13.	3. The number of patients in a clinic has Poisson distribution with standard deviation 3. Then $f(x) =$								
	a) $\frac{e^{-9}9^{x}}{x!}$	b) $\frac{e^{-3}3^x}{x!}$	$c) \frac{e^{-\frac{1}{3}\left(\frac{1}{3}\right)^{x}}}{x!}$	$d) \frac{e^{-\frac{1}{9}\left(\frac{1}{9}\right)^x}}{x!}$					
14.	4. If $X \sim Normal(\mu = 4, \sigma = 20)$, then the median of $Z = \frac{X-4}{20}$ is								
	a) 20	b) 4	c) 0	d) 4.47					
15.	5. Let T has t-distribution with 9 degrees of freedom. Find $P(T < 1.383) =$								
	a) 0.90	b) 0.95	c) 0.975	d) 0.995					
16.	16. If $X \sim Beta(2,3)$, then the mean of X is								
	a) 1.5	b) 0.08	c) 0.4	d) 1					
Q2: Use approximation for the following									
17.	Suppose that a samp	ole of $n = 2100$ tires	of the same type are	obtained at random					
	from an ongoing pro	duction process in v	which 0.95 of all suc	th tires produced are					
		_	2000 or more tires w	ill not be defectives?					
	(Use normal approxi			(1) 0.00 (4					
	a) 0. 6748	b) 0.9808	c) 0.95	d) 0.3264					
	18. Suppose 4% of the tires manufactured at a particular plant are defective. Using the Poisson approximation to the binomial, the probability of obtaining exactly one defective tire from a sample of 150 is calculated as								
	a) 0. 9851	b) 0.0384	c) 0.0025	d) 0.0149					
Q3: Summer rainfall totals X in a section of the Midwest have Gamma distribution with $\alpha = 3.0$ and $\beta = 0.5$. 19. Find the mean of the rainfall totals.									
19.	a) 9	b) 1.5	c) 0.5	<mark>d)</mark> 6					
	a) 9	0) 1.3	0.3	u o					
20.	$P(X \le 10) =$,					
	a) 0.997	b) 0.953	c) 0.918	d) 0.875					
21.	This distribution equ	ivalent to							
	a) $Exp(0.5)$	b) Gamma(0.5,2)	$\frac{\mathbf{c}}{\mathbf{c}}\chi_6^2$	d) Beta(2,0.5)					

12. When the population size is big such that M > 20n, "where n is the sample size",

then the Hypergeometric distribution can be approximated by

Q4: Proof

22. Let $X \sim Gamma(\alpha, \beta)$. proof that $M_X(t) = \left(\frac{\beta}{\beta - t}\right)^{\alpha}$, $t < \beta$.

23. Let $X \sim Poisson(\lambda)$, proof that $E(X) = \lambda$. Hint $e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!}$.