King Saud University College of Business Administration Department of Quantitative Analysis

Second Midterm Exam

(QUA107/ Introduction to Statistics in Business)

Name:	ID:
Serial Number:	Section:

For each question choose one answer from the given choices A, B, C, D or state another answer under E, and then put the chosen letter very carefully on the following table:

Question's No.	1	2	3	4	5	6	7	8	9	10
Chosen letter	Α	D	С	A	В	С	A	D	В	С
Question's No	11	12	13	14	15	16	17	18	19	20
Chosen letter	С	D	С	В	С	Α	D	С	A	D
Question's No	21	22	23	24	25					
Chosen letter	С	С	В	С	D					

Use the following data to answer questions 1 to 3:

A random sample of 500 respondents was selected to study the attitude about shopping for clothing. The results of this study are summarized in the following cross-classification table:

Enjoys Shopping for	Ger	nder	Total
Clothing	Male	Female	Total
Yes	136	224	360
No	104	36	140
Total	240	260	500

Suppose that a respondent is chosen at random,

Question (1): 1	P(F)	emale	and	Enjoys	Shopping)	equal:
-----------------	------	-------	-----	--------	-----------	--------

	(3)	II O				
(A) 0.448	(B) 0.072	(C) 0.208	(D) 0.272			
Question (2):	P(Female) equal:					
(A) 0.720	(B) 0.280	(C) 0.480	(D) 0.520			
Question (3): $P(Enjoys\ Shopping Female)$ equal:						
(A) 0.433	(B) 0.138	(C) 0.862	(D) 0.567			
	አ አአአ					

Question (4): $P(-1.24 \le Z \le 0.8)$ equal:

(A) .6806	(B) .6855	(C) .6749	(D) .7100			

Question (5): When sampling without replacement from a finite population such that the probability of a success, p, is no longer constant from trial to trial, the data follow a:

(A) binomial distribution.(B) hypergeometric distribution.(C) Poisson distribution.(D) uniform distribution.

Question (6): A box contains four yellow balls and eight green balls, two balls are drawn at random without replacement, find:

The probability that at least one of the balls is yellow is:

(A) 60/144	(B) 80/144	(C) 120/132	(D) 76/132			

Question (7): A company has bought 20 machines from a manufacturer. The manufacturer advises them that 8 of these machines have a defect. They take a random sample of 5 machines. What is the probability that exactly 2 of the machines in the sample have a defect?

(A) 0.397 (B) 0.297 (C) 0.148 (D) 0.4	
---------------------------------------	--

Question (8): Suppose that X has a Poisson distribution with variance equal 3. Then $P(X \le 1)$ equal:

(A)
$$5e^{-4}$$
 (B) $2e^{-1}$ (C) $3e^{-2}$ (D) $4e^{-3}$

Question (9): For a uniform distribution with a minimum = 2 and a maximum = 10, what is the probability that the uniformly distributed random variable is between six and ten?

(A) 4.0 (B) 0.5 (C) 1.0 (D) 0.125

Question (10): Suppose that X be a normally distributed random variable, the mean of the standard normal random variable (Z) is

(A) 3 (B) -1 (C) 0 (D) 1

Question (11): Suppose that Z has a standard normal distribution and that X has a normal distribution with mean 25 and standard deviation 2. If you know that P(Z < 1.75) = .5401 the value x equal:

(A) 35.76 (B) 27.88 (C) 28.5 (D) 48.75

2

Question (12): From the figure down the area under the curve for area (2) is:

Question (13): Which of the following statement is not true about the normal distribution?

- (A) The normal curve is symmetrical about the mean μ.
- (B) The mean is at the middle and divides the area into halves.
- (C) The total area under the curve is greater than 1.
- (D) It is completely determined by its mean and standard deviation σ (or variance σ^2).

Use the following data to answer questions 14 and 15:

Zip fit Tyre Company stocks three brands of tyre: brand A; brand B and brand C. 40% are Brand A, 35% are brand B and 25% are brand C. The percentage of defective tyres are 2% of brand A, 1% of brand B and 3% of brand C.

Question (14): If a tyre is picked at random what is the probability that it is defective?

(A) 0.075	(B) 0.019	(C) 0.366	(D) 0.06	

Question (15): If the company selects a tyre and finds it defective find the **probability that it is a brand C tyre.**

(A) 0.425	(B) 0.148	(C) 0.395	(D) 0.123	
-----------	-----------	-----------	-----------	--

Use the following data to answer questions 16 to 18:

Suppose that the proportion of the students of class A at Business administration collage, passing Statistics exam is 0.7. Four students who took the statistics exam are selected at random.

Question (16): The probability of no one passed the exam equals:

(A) 0.0081	(B) 0.2982	(C) 0.0713	(D) 0.3992
------------	------------	------------	------------

Question (17): The probability of at least two student passed the exam equals:

(A) 0.0056	(B) 0.1192	(C) 0.1522	(D) 0.9163	
------------	------------	------------	------------	--

Question (18): The mean and standard deviation equals:

(A) 1.2 , 5.15	(B) 3.5, 0.84	(C) 2.8, 0.92	(D) 4.9 ,3.24

Question (19): A random variable, time to load a delivery truck, is uniformly distributed. The distribution is defined by the

- (B) maximum time to load a delivery truck.
- (C) minimum time to load a delivery truck.
- (D) standard deviation.

Use the following data to answer questions 20 and 21:

The following table contains the probability distribution for the number of traffic accidents daily in a small city.

Number of accidents daily (X)	0	1	2	3
Probability(P)	0.10	0.45	0.40	0.05

Question (20): Compute the expected number of accidents per day (E(x)):

	(A) 5.75	(B)2.3	(D) 1.4					
Question (21): Find variance								
	(A) 13.14	(B) 4.86	(C) 0.54	(D) 6.41				

<u>Qı</u>	<u>uestion (22) :</u>		ormal curve rep, and					
	A.	range	/ standard dev	viation / varia	nce			
	B.	mean /	median / stan	dard deviatio	n			
	C.	mean /	median / mod	le .				
	D.	mode/	median / stand	dard deviatio	n.			
L			ታ ታ ታ ታ ታ	7 ☆				
Use t	he following o	data to	answer ques	tions 23 and	24 :			
	ne that the nur			•	•			
	network (LAN) er of network (<u>n variable</u> . ⁻	The mean		
	tion (23): W to one networ			that in any	given day	less than or		
	(A) 0.0172		(B) 0.0916	(C) 0.046	67 (D) 0.1956		
Ques	tion (24) : Find	d variar	nce					
	(A) 13	(B) 2	(C) 4	(D)	6		
			አ አ አ አ	τ☆				
Ques	tion (25) : The	mean	of a binomial of	distribution de	epends on:			
	(A) Number of trials.							
	(B) Probability of success .							
j	(C) Probability of failure .							
ĺ	(D) Number of trials and probability of success .							

Z- table

	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.0	0.0000	0.0040	0.0080	0.0120	0.0160	0.0199	0.0239	0.0279	0.0319	0.0359
0.1	0.0398	0.0438	0.0478	0.0517	0.0557	0.0596	0.0636	0.0675	0.0714	0.0753
0.2	0.0793	0.0832	0.0871	0.0910	0.0948	0.0987	0.1026	0.1064	0.1103	0.1141
0.3	0.1179	0.1217	0.1255	0.1293	0.1331	0.1368	0.1406	0.1443	0.1480	0.1517
0.4	0.1554	0.1591	0.1628	0.1664	0.1700	0.1736	0.1772	0.1808	0.1844	0.1879
0.5	0.1915	0.1950	0.1985	0.2019	0.2054	0.2088	0.2123	0.2157	0.2190	0.2224
0.6	0.2257	0.2291	0.2324	0.2357	0.2389	0.2422	0.2454	0.2486	0.2517	0.2549
0.7	0.2580	0.2611	0.2642	0.2673	0.2704	0.2734	0.2764	0.2794	0.2823	0.2852
0.8	0.2881	0.2910	0.2939	0.2967	0.2995	0.3023	0.3051	0.3078	0.3106	0.3133
0.9	0.3159	0.3186	0.3212	0.3238	0.3264	0.3289	0.3315	0.3340	0.3365	0.3389
1.0	0.3413	0.3438	0.3461	0.3485	0.3508	0.3531	0.3554	0.3577	0.3599	0.3621
1.1	0.3643	0.3665	0.3686	0.3708	0.3729	0.3749	0.3770	0.3790	0.3810	0.3830
1.2	0.3849	0.3869	0.3888	0.3907	0.3925	0.3944	0.3962	0.3980	0.3997	0.4015
1.3	0.4032	0.4049	0.4066	0.4082	0.4099	0.4115	0.4131	0.4147	0.4162	0.4177
1.4	0.4192	0.4207	0.4222	0.4236	0.4251	0.4265	0.4279	0.4292	0.4306	0.4319
1.5	0.4332	0.4345	0.4357	0.4370	0.4382	0.4394	0.4406	0.4418	0.4429	0.4441
1.6	0.4452	0.4463	0.4474	0.4484	0.4495	0.4505	0.4515	0.4525	0.4535	0.4545
1.7	0.4554	0.4564	0.4573	0.4582	0.4591	0.4599	0.4608	0.4616	0.4625	0.4633
1.8	0.4641	0.4649	0.4656	0.4664	0.4671	0.4678	0.4686	0.4693	0.4699	0.4706
1.9	0.4713	0.4719	0.4726	0.4732	0.4738	0.4744	0.4750	0.4756	0.4761	0.4767
2.0	0.4772	0.4778	0.4783	0.4788	0.4793	0.4798	0.4803	0.4808	0.4812	0.4817
2.1	0.4821	0.4826	0.4830	0.4834	0.4838	0.4842	0.4846	0.4850	0.4854	0.4857
2.2	0.4861	0.4864	0.4868	0.4871	0.4875	0.4878	0.4881	0.4884	0.4887	0.4890
2.3	0.4893	0.4896	0.4898	0.4901	0.4904	0.4906	0.4909	0.4911	0.4913	0.4916
2.4	0.4918	0.4920	0.4922	0.4925	0.4927	0.4929	0.4931	0.4932	0.4934	0.4936
2.5	0.4938	0.4940	0.4941	0.4943	0.4945	0.4946	0.4948	0.4949	0.4951	0.4952
2.6	0.4953	0.4955	0.4956	0.4957	0.4959	0.4960	0.4961	0.4962	0.4963	0.4964
2.7	0.4965	0.4966	0.4967	0.4968	0.4969	0.4970	0.4971	0.4972	0.4973	0.4974
2.8	0.4974	0.4975	0.4976	0.4977	0.4977	0.4978	0.4979	0.4979	0.4980	0.4981
2.9	0.4981	0.4982	0.4982	0.4983	0.4984	0.4984	0.4985	0.4985	0.4986	0.4986
3.0	0.4987	0.4987	0.4987	0.4988	0.4988	0.4989	0.4989	0.4989	0.4990	0.4990