
Formal Proofs

To prove an argument is valid or the conclusion follows
logically from the hypotheses:

•     Assume    the hypotheses are true

• Use the rules of inference and logical equivalences
to determine that the conclusion is true.

__________________

Example:

Consider the following logical argument:

If horses fly or cows eat artichokes, then the mosquito
is the national bird. If the mosquito is the national
bird then peanut butter takes good on hot dogs. But
peanut butter tastes terrible on hot dogs. Therefore,
cows don't eat artichokes.

• Assign propositional variables to the component
propositions in the argument:
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F Horses fly
A Cows eat artichokes
M The mosquito is the national bird
P Peanut butter tastes good on hot dogs



• Represent the formal argument using the variables

1.(F ∨ A) → M

2.M → P

3.¬P

∴¬A

• Use the hypotheses 1., 2., and 3. and the above
rules of inference and any logical equivalences to construct
the proof.

    Assertion       Reasons   
1.(F ∨ A) → M Hypothesis 1.
2.M → P Hypothesis 2.
3.(F ∨ A) → P` steps 1 and 2 and

hypothetical syll.
4.¬P Hypothesis 3.
5.¬(F ∨ A) steps 3 and 4 and

modus tollens
6.¬F ∧ ¬A step 5 and DeMorgan
7.¬A ∧ ¬F step 6 and 

commutativity of 'and'
8.¬A step 7 and simplification

Q. E. D.

Methods of Proof

We wish to establish the truth of the 'theorem'

P → Q.
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P  may be a conjunction of other hypotheses.

 P → Q is a conjecture until a proof is produced.

___________________

• Trivial  proof

If we know Q  is true then P → Q is true.

___________________

Example:

If it's raining today then the void set is a subset of every
set.

The assertion is trivially true independent of the truth of P.

___________________

• Vacuous proof

If we know one of the hypotheses in P  is false then
P → Q is vacuously  true.

____________________

Example:

If I am both rich and poor then hurricane Fran was a mild
breeze.

This is of the form
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(P ∧ ¬P) → Q

and the hypotheses form a contradiction.

Hence Q follows from the hypotheses vacuously.

___________________

• Direct proof

- assumes the hypotheses are true

- uses the rules of inference, axioms and any
logical equivalences to establish the truth of the
conclusion.

_______________

Example: the Cows don’t eat artichokes  proof above

_________________

• Indirect proof

A direct proof of the contrapositive:

- assumes the conclusion of P → Q is false (¬Q
is true)

- uses the rules of inference, axioms and any
logical equivalences to establish the premise P is false.

Note, in order to show that a conjunction of hypotheses is
false is suffices to show just one of the hypotheses is false.
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___________________

Example:

Theorem: If 6x + 9y = 101, then x or y is not an integer.

Proof: (Direct) Assume 6x + 9y = 101 is true.

Then from the rules of algebra 3(2x + 3y) = 101.

But 101/3 is not an integer so it must be the case that one
of 2x or 3y is not an integer (maybe both).

Therefore, one of x or y must not be an integer.

Q.E.D.
_____________________

Example:

A perfect number is one which is the sum of all its divisors
except itself. For example, 6 is perfect since 1 + 2 + 3 = 6.
So is 28.

Theorem: A perfect number is not a prime.

Proof: (Indirect).  We assume the number p is a prime and
show it is not perfect.

But the only divisors of a prime are 1 and itself.

Hence the sum of the divisors less than p is 1 which is not
equal to p.

Hence p cannot be perfect.
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 Q. E. D.
_____________________

• Proof by contradiction  or  reductio ad
absurdum

- assumes the conclusion Q is false

- derives a contradiction, usually of the form
P ∧ ¬P which establishes ¬Q → 0.

The contrapositive of this assertion is 1→ Q from which it
follows that Q must be true.

_________________

Example:

Theorem: There is no largest prime number.

(Note that there are no formal hypotheses here.)

We assume the conclusion 'there is no largest prime
number' is false.

 There is a largest prime number.

Call it p.

Hence, the set of all primes lie between 1 and p.

Form the product of these primes:

r = 2•3•5•7•11•....•p.
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But r + 1 is a prime larger than p. (Why?).

This contradicts the assumption that there is a largest
prime.

Q.E.D.

____________________

The formal structure of the above proof is as follows:

Let P be the assertion that there is no largest prime.
Let Q be the assertion that p is the largest prime.

Assume ¬P  is true.

Then (for some p) Q is true so ¬P → Q is true.

We then construct a prime greater than p so Q → ¬Q.

Applying hypothetical syllogism we get ¬P → ¬Q .

From two applications of modus ponens we conclude
that Q is true and ¬Q is true so by conjunction ¬Q ∧ Q or
a contradiction is true.

Hence the assumption must be false and the theorem
is true.

_____________________

• Proof by Cases

Break the premise of P → Q into an equivalent
disjunction of the form
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P1 ∨ P2 ∨... ∨Pn .

Then  use the tautology

[(P1 → Q) ∧ (P2 → Q) ∧ ...∧ (Pn → Q)] ↔
[(P1 ∨ P2 ∨ ... ∨ Pn ) → Q]

Each of the implications Pi → Q is a case.

You must

• Convince the reader that the cases are inclusive,
i.e., they exhaust all possibilities

• establish all implications

__________________

Example:

Let ⊗ be the operation 'max' on the set of integers:

if a ≥ b then a⊗b = max{a, b} = a = b⊗a.

Theorem: The operation ⊗ is associative.

For all a, b, c

(a⊗b)⊗c = a⊗(b⊗c).

Proof:

Let a, b, c be arbitrary integers.
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Then one of the following 6 cases must hold (are
exhaustive):

1. a ≥ b ≥ c
2. a ≥ c ≥ b
3. b ≥ a ≥ c
4. b ≥ c ≥ a
5. c ≥ a ≥ b
6. c ≥ b ≥ a

Case 1: a⊗b = a, a⊗c = a,  and b⊗c = b.

Hence

 (a⊗b)⊗c = a = a⊗(b⊗c).

Therefore the equality holds for the first case.

The proofs of the remaining cases are similar (and are left
for the student).

Q. E. D.
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