2. An ion accelerated through a potential difference of 115 V experiences an increase in kinetic energy of $7.37 \times 10^{-17} \mathrm{~J}$. Calculate the charge on the ion.
3. (a) Calculate the speed of a proton that is accelerated from rest through a potential difference of 120 V . (b) Calculate the speed of an electron that is accelerated through the same potential difference.
4. The difference in potential between the accelerating plates in the electron gun of a TV picture tube is about 25000 V . If the distance between these plates is 1.50 cm , what is the magnitude of the uniform electric field in this region?
5. Given two $2.00-\mu \mathrm{C}$ charges, as shown in Figure P25.16, and a positive test charge $q=1.28 \times 10^{-18} \mathrm{C}$ at the origin, (a) what is the net force exerted by the two 2.00$\mu \mathrm{C}$ charges on the test charge q ? (b) What is the electric field at the origin due to the two $2.00-\mu \mathrm{C}$ charges? (c) What is the electrical potential at the origin due to the two $2.00-\mu \mathrm{C}$ charges?

6. At a certain distance from a point charge, the magnitude of the electric field is $500 \mathrm{~V} / \mathrm{m}$ and the electric potential is -3.00 kV . (a) What is the distance to the charge? (b) What is the magnitude of the charge?
7. Two point charges, $Q_{1}=+5.00 \mathrm{nC}$ and $Q_{2}=-3.00 \mathrm{nC}$, are separated by 35.0 cm . (a) What is the potential energy of the pair? What is the significance of the algebraic sign of your answer? (b) What is the electric potential at a point midway between the charges?
