1. In a particular cathode ray tube, the measured beam current is $30.0 \mu \mathrm{~A}$. How many electrons strike the tube screen every 40.0 s?
2. An aluminum wire having a cross-sectional area of $4.00 \times 10^{-6} \mathrm{~m}^{2}$ carries a current of 5.00 A . Find the drift speed of the electrons in the wire. The density of aluminum is $2.70 \mathrm{~g} / \mathrm{cm}^{3}$. Assume that one conduction electron is supplied by each atom.
3. Calculate the current density in a gold wire at $20^{\circ} \mathrm{C}$, if an electric field of 0.740 V / m exists in the wire.
4. A $0.900-\mathrm{V}$ potential difference is maintained across a $1.50-\mathrm{m}$ length of tungsten wire that has a cross-sectional area of $0.600 \mathrm{~mm}^{2}$. What is the current in the wire?
5. A conductor of uniform radius 1.20 cm carries a current of 3.00 A produced by an electric field of $120 \mathrm{~V} / \mathrm{m}$. What is the resistivity of the material?
6. Aluminum and copper wires of equal length are found to have the same resistance. What is the ratio of their radii?
7. Review problem. An aluminum rod has a resistance of $1.234 \boldsymbol{\Omega}$ at $20.0^{\circ} \mathrm{C}$. Calculate the resistance of the rod at $120^{\circ} \mathrm{C}$ by accounting for the changes in both the resistivity and the dimensions of the rod.
8. What is the fractional change in the resistance of an iron filament when its temperature changes from $25.0^{\circ} \mathrm{C}$ to $50.0^{\circ} \mathrm{C}$?
9. A toaster is rated at 600 W when connected to a $120-\mathrm{V}$ source. What current does the toaster carry, and what is its resistance?
10. Compute the cost per day of operating a lamp that draws a current of 1.70 A from a $110-\mathrm{V}$ line. Assume the cost of energy from the power company is $\$ 0.060$ 0/kWh.
11. A high-voltage transmission line with a diameter of 2.00 cm and a length of 200 km carries a steady current of 1000 A . If the conductor is copper wire with a free charge density of 8.00×10^{28} electrons $/ \mathrm{m}^{3}$, how long does it take one electron to travel the full length of the line?
