Problem Set (1): LP models

Problem 1:

A small manufacturer employs 5 skilled men and 10 semi-skilled men and makes an article in two qualities, a deluxe model and an ordinary model. The making of a deluxe model requires 2 hours work by a skilled man and 2 hours work by a semi-skilled man. The ordinary model requires 1 hour work by a skilled man and 3 hours work by a semi-skilled man. By work rules no man can work more than 8 hours a day. The manufacturer's clear profit of the deluxe model is L.E. 10 and of the ordinary model L.E. 8. Formulate the model of the problem.

Answer:

Maximize $Z=10 x_{1}+8 x_{2}$, subject to: $2 x_{1}+x_{2} \leq 40,2 x_{1}+3 x_{2} \leq 80, x_{1} \geq 0, x_{2} \geq 0$.

Problem 2:

The manager of an oil refinery has to decide upon the optimal mix of two possible blending processes, of which the inputs and outputs per production run are as follows:

	Input		Output	
Process	Crude A	Crude B	Gasoline X	Gasoline Y
1	5	3	5	8
2	4	5	4	4

The maximum amount available of crude A and B are 200 units and 150 units respectively. Market requirements show that at least 100 units of gasoline X and 80 units of gasoline Y must be produced. The profits per production run from process 1 and process 2 are $\$ 3$ and $\$ 4$ respectively. Formulate the problem as linear programming problem.

Answer:

Maximize $Z=3 x_{1}+4 x_{2}$, subject to: $5 x_{1}+4 x_{2} \leq 200,3 x_{1}+5 x_{2} \leq 150,5 x_{1}+4 x_{2} \geq 100$, $8 x_{1}+4 x_{2} \geq 80$ and $x_{1}, x_{2} \geq 0$.

Problem 3:

A farmer has a 100 acre farm. He can sell tomatoes, lettuce or radishes. The price he can obtain is $\$ 1.00$ per kg of tomatoes, $\$ 0.75$ per head of lettuce and $\$ 2.00$ per kg of radishes

The average yield per acre is 2000 kg of tomatoes, 3000 heads of lettuce and 1000 kg of radishes

Fertilizer is available at $\$ 0.5$ per kg and the amount required per acre is 100 kg each for tomatoes and lettuce and 50 kg for radishes.

Labor required for sowing, cultivating and harvesting per acre is 5 man-days for tomatoes and radishes and 6 man-days for lettuce. A total of 400 man-days of labor are available at $\$ 20$ per man-day.

Formulate the LP model for this problem in order to maximize the farmer's total profit

Solution:

Assume the farmer will cultivate x, y and z acres of tomatoes, lettuce and radishes respectively.

- The selling price for all products $=2000 x+2250 y+2000 z$
- Cost of fertilizers $=50 x+50 y+25 z$
- Cost of labor $=100 x+120 y+100 z$
- Net profit $=(2000-50-100) x+(2250-50-120) y+(2000-25-100) z$
- Net profit $=1850 x+2080 y+1875 z$

The constraints are:

- Total area of land: $x+y+z \leq 100$
- The available man-days: $5 x+6 y+5 z \leq 400$
- Non negativity: $x, y, z \geq 0$

The LP model is:
Maximize

$$
P=1850 x+2080 y+1875 z
$$

Subject to:

$$
\begin{aligned}
& x+y+z \leq 100 \\
& 5 x+6 y+5 z \leq 400 \\
& x, y, z \geq 0
\end{aligned}
$$

