Show the output After one AES Round if (Show your work) : Input = ea835cF00445332d655d98ad8596b0c5 Cipher Key = ac7766f319fadc2128d12941575c006a

Constant of multiplication by $X=(0001$ 1011).

- Find the four state as follows:
- Sub-byte for all bytes of the state
- Shift Row all bytes of the state
- Mix-Column for the first byte of the resultant state
- Add-Round for the first byte of the resultant state
$\left[\begin{array}{llll}02 & 03 & 01 & 01 \\ 01 & 02 & 03 & 01 \\ 01 & 01 & 02 & 03 \\ 03 & 01 & 01 & 02\end{array}\right]$
(a) S-box

		y															
		0	1	2	3	4	5	6	7	8	9	A	B	C	D	E	F
\boldsymbol{x}	0	63	7C	77	7B	F2	6B	6 F	C5	30	01	67	2B	FE	D7	AB	76
	1	CA	82	C9	7D	FA	59	47	F0	AD	D4	A2	AF	9C	A4	72	C0
	2	B7	FD	93	26	36	3F	F7	CC	34	A5	E5	F1	71	D8	31	15
	3	04	C7	23	C3	18	96	05	9A	07	12	80	E2	EB	27	B2	75
	4	09	83	2C	1A	1B	6 E	5A	A0	52	3B	D6	B3	29	E3	2F	84
	5	53	D1	00	ED	20	FC	B1	5B	6A	CB	BE	39	4A	4C	58	CF
	6	D0	EF	AA	FB	43	4D	33	85	45	F9	02	7F	50	3C	9F	A8
	7	51	A3	40	8F	92	9D	38	F5	BC	B6	DA	21	10	FF	F3	D2
	8	CD	0C	13	EC	5F	97	44	17	C4	A7	7E	3D	64	5D	19	73
	9	60	81	4 F	DC	22	2 A	90	88	46	EE	B8	14	DE	5E	0B	DB
	A	E0	32	3A	0A	49	06	24	5C	C2	D3	AC	62	91	95	E4	79
	B	E7	C8	37	6D	8D	D5	4E	A9	6C	56	F4	EA	65	7A	AE	08
	C	BA	78	25	2E	1C	A6	B4	C6	E8	DD	74	1F	4B	BD	8B	8A
	D	70	3E	B5	66	48	03	F6	0E	61	35	57	B9	86	C1	1D	9E
	E	E1	F8	98	11	69	D9	8E	94	9B	1E	87	E9	CE	55	28	DF
	F	8C	A1	89	0D	BF	E6	42	68	41	99	2D	0F	B0	54	BB	16

AES Single Round Example

The Input block of data to a single round of AES algorithm with 128 bits length is

EA	04	65	85
83	45	5 D	96
5 C	33	98	B 0
F0	2 D	AD	C 5

and a round key input to this round is

AC	19	28	57
77	FA	D1	5 C
66	DC	29	00
F3	21	41	6 A

Find the data of output block from this round

Answer:

After Substitute Bytes Transformation

87	F2	4 D	97
EC	6 E	4 C	90
4 A	C 3	46	E 7
8 C	D 8	95	A 6

After Shift Row Transformation

87	F 2	4 D	97
6 E	4 C	90	EC
46	E 7	4 A	C 3
A 6	8 C	D 8	95

After Mix Column Transformation

$\left[\begin{array}{cccc}02 & 03 & 01 & 01 \\ 01 & 02 & 03 & 01 \\ 01 & 01 & 02 & 03 \\ 03 & 01 & 01 & 02\end{array}\right]\left[\begin{array}{cccc}87 & \mathrm{~F} 2 & 4 \mathrm{D} & 97 \\ 6 \mathrm{E} & 4 \mathrm{C} & 90 & \mathrm{EC} \\ 46 & \mathrm{E} 7 & 4 \mathrm{~A} & \mathrm{C} 3 \\ \mathrm{~A} 6 & 8 \mathrm{C} & \mathrm{D} 8 & 95\end{array}\right]=\left[\begin{array}{cccc}47 & 40 & \mathrm{~A} 3 & 4 \mathrm{C} \\ 37 & \mathrm{D} 4 & 70 & 9 \mathrm{~F} \\ 94 & \mathrm{E} 4 & 3 \mathrm{~A} & 42 \\ \mathrm{ED} & \mathrm{A5} & \mathrm{~A} 6 & \mathrm{BC}\end{array}\right]$

- To find the first byte after Mix Column, we do matrix multiplication over $\mathrm{GF}\left(2^{8}\right)$ as follows:
$(02 * 87) \oplus(03 * 6 \mathrm{E}) \oplus 46 \oplus \mathrm{~A} 6=47$
We have $02 * 87=(00000010) *(10000111)=(00001110) \oplus(00011011)$

$$
=(00010101)
$$

After Mix Column Transformation

- To find the first byte after Mix Column, we do matrix multiplication over GF(2^{8}) as follows:
In particular, multiplication of a value by (i.e., by $\{02\}$) can be implemented as a 1-bit left shift followed by a conditional bitwise XOR with (0001 1011)

```
(02*87) \oplus(03 * 6E) }\oplus46\oplus\textrm{A}6=4
We have 02 * 87 = (0000 0010) * (1000 0111) =(0000 1110) }\oplus(0001 1011
    =(0001 0101)
and (03 * 6E) = (0000 0011)* (0110 1110) = (0000 0001)* (0110 1110) }\oplus(0000 0010)*
(0110 1110)
    =(0110 1110) \oplus(1101 1100)=(1011 0010)
and (46) = (0100 0110)
and (A6) =(1010 0110)
```

Then the first byte $=(00010101) \oplus(10110010) \oplus(01000110) \oplus(10100110)=(01000111)$ $=(47)$

- After Add Round Key Transformation

47	40	A 3	4 C					
37	D 4	70	9 F					
94	E 4	3 A	42					
ED	A 5	A 6	BC	\oplus	AC	19	28	57
:---:	:---:	:---:	:---:					
77	FA	D 1	5 C					
66	DC	29	00					
F 3	21	41	6 A	$=$	EB	59	8 B	1 B
:---:	:---:	:---:	:---:	:---:				
40	2 E	A 1	C 3					
F 2	38	13	42					
1 E	84	E 7	D 2					

The value of the first byte of after Add Round Key = (47) $\oplus(\mathrm{AC})$
(47) $\oplus(\mathrm{AC})=(01000111) \oplus(10101100)=(11101011)=(\mathrm{EB})$

The value of the first byte of after Add Round Key $=(47) \oplus(\mathrm{AC})=(\mathrm{EB})$

