System of Linear Equations

Method of Solving Systems of Linear Equations

Matrex

Augmented
Elementary Row Operations

Mathod of

Bander Almutairi
King Saud University
5 Sep 2013

1 Linear System

Linear System
Augmented
Matrex
Elementary Row Operations

Mathod of

2 Augmented Matrex
■ Elementary Row Operations

3 Mathod of Solving Linear System

System of
Linear
Equations
Bander
Almutairi

Linear System
Augmented
Matrex
Elementary Row Operations

Definition

Mathod of coeficient of x.

We say $y=a x+b$ is a linear equation (or equation of a line) in two variables x, y, where b is a constant and a is the

System of
Linear
Equations
Bander
Almutairi

Linear System

Definition

We say $y=a x+b$ is a linear equation (or equation of a line) in two variables x, y, where b is a constant and a is the coeficient of x. A linear equation of n varibles has the form:

$$
a_{1} x_{1}+a_{2} x_{2}+\ldots+a_{n} x_{n}=b
$$

where x_{1}, \ldots, x_{n} variables (unknown), a_{1}, \ldots, a_{n} coeficient and b constant.

System of
Linear
Equations
Bander
Almutairi

Linear System

Definition

We say $y=a x+b$ is a linear equation (or equation of a line) in two variables x, y, where b is a constant and a is the coeficient of x. A linear equation of n varibles has the form:

$$
a_{1} x_{1}+a_{2} x_{2}+\ldots+a_{n} x_{n}=b
$$

where x_{1}, \ldots, x_{n} variables (unknown), a_{1}, \ldots, a_{n} coeficient and b constant.

System of Linear Equations

Bander Almutairi

Linear System
Augmented
Matrex
Elementary Row Operations

Example

Linear
(a) $x+3 y=-15$
(b) $x+y+z=0$
(b) $x=y$
(d) $3 x+2 y=7$

Non-Linear
$x=a y^{2}$ or $y=a x^{2}$
$x^{2}+y+z^{3}=5$
$x^{-1}+y x+z^{2}=0$
$5 x+y+z^{-5}=3$.

System of Linear
Equations
Bander
Almutairi

Linear System
Augmented Matrex
Elementary Row Operations System

Example

Linear
(a) $x+3 y=-15$
(b) $x+y+z=0$
(b) $x=y$
(d) $3 x+2 y=7$

Non-Linear
$x=a y^{2}$ or $y=a x^{2}$
$x^{2}+y+z^{3}=5$
$x^{-1}+y x+z^{2}=0$
$5 x+y+z^{-5}=3$.
A linear system of m linear equations and n variables (unknowns) is:

System of
Linear
Equations
Bander
Almutairi

Linear System
Augmented
Matrex
Elementary Row Operations

Example

Linear
(a) $x+3 y=-15$
(b) $x+y+z=0$
(b) $x=y$
(d) $3 x+2 y=7$

A linear system of m linear equations and n variables (unknowns) is:

$$
\begin{aligned}
& a_{11} x_{1}+a_{12} x_{2}+\cdots+a_{1 n} x_{n}=b_{1} \\
& a_{21} x_{1}+a_{22} x_{2}+\cdots+a_{2 n} x_{n}=b_{2}
\end{aligned}
$$

$$
a_{m 1} x_{1}+a_{m 2} x_{2}+\cdots+a_{m n} x_{n}=b_{m}
$$

Here x_{i} are the unknown, $a_{i j}$ are the coefficients of the system,

System of
Linear
Equations
Bander
Almutairi

Linear System
Augmented
Matrex
Elementary Row Operations

Example

Linear
(a) $x+3 y=-15$
(b) $x+y+z=0$
(b) $x=y$
(d) $3 x+2 y=7$

A linear system of m linear equations and n variables (unknowns) is:

$$
\begin{aligned}
& a_{11} x_{1}+a_{12} x_{2}+\cdots+a_{1 n} x_{n}=b_{1} \\
& a_{21} x_{1}+a_{22} x_{2}+\cdots+a_{2 n} x_{n}=b_{2}
\end{aligned}
$$

$$
a_{m 1} x_{1}+a_{m 2} x_{2}+\cdots+a_{m n} x_{n}=b_{m}
$$

Here x_{i} are the unknown, $a_{i j}$ are the coefficients of the system,

System of

Definition

A linear system is called:

- consistent if the system has at least one solution; or
- inconsistent if the system has no solution.

System of
Linear
Equations
Bander
Almutairi

Linear System
Augmented
Matrex
Elementary Row Operations

Definition

A linear system is called:

- consistent if the system has at least one solution; or
- inconsistent if the system has no solution.

Examples

(a) $x-3 y=-3$
(b) $x-3 y=-7$ $2 x-6 y=7$
(c) $3 x-y+6 z=6$ $x+y+z=2$
$2 x+y+4 z=3$
The systems (a), (c) are consistent but the system (b) is inconsistent.

System of Linear
Equations
Bander Almutairi

Suppose we have the following linear system:

$$
\begin{aligned}
& a_{11} x_{1}+a_{12} x_{2}+a_{13} x_{3}=b_{1} \\
& a_{21} x_{1}+a_{22} x_{2}+a_{23} x_{3}=b_{2} \\
& a_{31} x_{1}+a_{32} x_{2}+a_{33} x_{3}=b_{3}
\end{aligned}
$$

Suppose we have the following linear system:

$$
\begin{aligned}
& a_{11} x_{1}+a_{12} x_{2}+a_{13} x_{3}=b_{1} \\
& a_{21} x_{1}+a_{22} x_{2}+a_{23} x_{3}=b_{2} \\
& a_{31} x_{1}+a_{32} x_{2}+a_{33} x_{3}=b_{3}
\end{aligned}
$$

We can write the linear system in the form of matrices product

$$
\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right]
$$

System of Linear
Equations
Bander
Almutairi

Linear System
Augmented Matrex
Elementary Row Operations

Mathod of
Solving Linear System

We may write it in the form $A X=b$, where

$$
A=\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right], \quad X=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right] \quad \text { and }\left[\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right]
$$

System of
Linear
Equations
Bander
Almutairi

Linear System
Augmented Matrex
Elementary Row Operations

We may write it in the form $A X=b$, where

$$
A=\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right], \quad X=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right] \quad \text { and }\left[\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right]
$$

Definition

The augmented matrx of the linear system is

$$
[A: b]=\left[\begin{array}{llll}
a_{11} & a_{12} & a_{13} & b_{1} \\
a_{21} & a_{22} & a_{23} & b_{2} \\
a_{31} & a_{32} & a_{33} & b_{3}
\end{array}\right]
$$

System of

Example

Write the matrix form and the augmented matrix for the following system:

$$
\begin{array}{r}
3 x-y+6 z=6 \\
x+y+z=2 \\
2 x+y+4 z=3
\end{array}
$$

System of Linear Equations

Bander
Almutairi

Linear System
Augmented
Matrex
Elementary Row Operations

Example

Write the matrix form and the augmented matrix for the following system:

$$
\begin{array}{r}
3 x-y+6 z=6 \\
x+y+z=2 \\
2 x+y+4 z=3
\end{array}
$$

Solution

The matrix form of the system is

$$
\left[\begin{array}{ccc}
3 & -1 & 6 \\
1 & 1 & 1 \\
2 & 1 & 4
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
6 \\
2 \\
3
\end{array}\right]
$$

System of
Linear
Equations
Bander Almutairi

Linear System
Augmented Matrex
Elementary Row Operations

Mathod of Solving Linear System

The augmented matrix is

$$
[A: b]=\left[\begin{array}{cccc}
3 & -1 & 6 & 6 \\
1 & 1 & 1 & 2 \\
2 & 1 & 4 & 3
\end{array}\right]
$$

Elementary Row Operations:

■ (a) Interchange two rows:
Bander Almutairi

Linear System
Augmented Matrex
Elementary Row Operations

Mathod of

System of
Linear
Equations
Bander
Almutairi

Linear System
Augmented Matrex
Elementary Row Operations
Mathod of
Solving Linear System

Elementary Row Operations:

■ (a) Interchange two rows:

$$
\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right] \xrightarrow{R_{1} \leftrightarrow R_{2}}\left[\begin{array}{lll}
a_{21} & a_{22} & a_{23} \\
a_{11} & a_{12} & a_{13} \\
a_{31} & a_{32} & a_{33}
\end{array}\right]
$$

System of
Linear
Equations
Bander
Almutairi

Linear System
Augmented Matrex
Elementary Row Operations

Elementary Row Operations:

■ (a) Interchange two rows:

$$
\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right] \xrightarrow{R_{1} \leftrightarrow R_{2}}\left[\begin{array}{lll}
a_{21} & a_{22} & a_{23} \\
a_{11} & a_{12} & a_{13} \\
a_{31} & a_{32} & a_{33}
\end{array}\right]
$$

■ (b) Multiply a row with a non-zero real number $\alpha \in \mathbb{R}$:

System of
Linear
Equations
Bander
Almutairi

Linear System
Augmented Matrex
Elementary Row Operations

Mathod of Solving Linear System

Elementary Row Operations:

■ (a) Interchange two rows:

$$
\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right] \xrightarrow{R_{1} \leftrightarrow R_{2}}\left[\begin{array}{lll}
a_{21} & a_{22} & a_{23} \\
a_{11} & a_{12} & a_{13} \\
a_{31} & a_{32} & a_{33}
\end{array}\right]
$$

■ (b) Multiply a row with a non-zero real number $\alpha \in \mathbb{R}$:

$$
\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right] \xrightarrow{\alpha R_{1}}\left[\begin{array}{ccc}
\alpha a_{11} & \alpha a_{12} & \alpha a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right]
$$

System of
Linear
Equations
Bander Almutairi

Augmented Matrex

Elementary Row Operations

Mathod of Solving Linear System

Elementary Row Operations:

■ (a) Interchange two rows:

$$
\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right] \xrightarrow{R_{1} \leftrightarrow R_{2}}\left[\begin{array}{lll}
a_{21} & a_{22} & a_{23} \\
a_{11} & a_{12} & a_{13} \\
a_{31} & a_{32} & a_{33}
\end{array}\right]
$$

■ (b) Multiply a row with a non-zero real number $\alpha \in \mathbb{R}$:

$$
\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right] \xrightarrow{\alpha R_{1}}\left[\begin{array}{ccc}
\alpha a_{11} & \alpha a_{12} & \alpha a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right]
$$

- (c) Add a multiply of onw row to another row:

System of
Linear
Equations
Bander Almutairi

Elementary Row Operations:

■ (a) Interchange two rows:

$$
\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right] \xrightarrow{R_{1} \leftrightarrow R_{2}}\left[\begin{array}{lll}
a_{21} & a_{22} & a_{23} \\
a_{11} & a_{12} & a_{13} \\
a_{31} & a_{32} & a_{33}
\end{array}\right]
$$

■ (b) Multiply a row with a non-zero real number $\alpha \in \mathbb{R}$:

$$
\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right] \xrightarrow{\alpha R_{1}}\left[\begin{array}{ccc}
\alpha a_{11} & \alpha a_{12} & \alpha a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right]
$$

- (c) Add a multiply of onw row to another row:

$$
\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right] \xrightarrow{\alpha R_{1}+R_{2}}\left[\begin{array}{ccr}
a_{11} & a_{12} & a_{13} \\
\alpha a_{11}+a_{21} & \alpha a_{12}+a_{22} & \alpha a_{13}+ \\
a_{31} & a_{32} & a_{33}
\end{array}\right.
$$

System of Linear Equations

Bander Almutairi

Linear System
Augmented Matrex

Elementary Row Operations

Mathod of Solving Linear System

We will study two methods of solving linear system:

System of Linear Equations

Bander Almutairi

We will study two methods of solving linear system:
■ Gussian Elimination Method.

System of Linear Equations

Bander Almutairi

We will study two methods of solving linear system:

- Gussian Elimination Method.

■ Guss-Jordan Elimination Method.

System of Linear Equations

Bander Almutairi

We will study two methods of solving linear system:

- Gussian Elimination Method.

■ Guss-Jordan Elimination Method.

System of
Linear
Equations
Bander
Almutairi

Guassian Elimination Method:

Augmented
Matrex
Elementary Row
Operations
Mathod of
Solving Linear
System

System of
Linear
Equations
Bander
Almutairi

Linear System
Augmented
Matrex
Elementary Row
Operations
Mathod of
Solving Linear
System

Guassian Elimination Method:

This method has two steps:

System of
Linear
Equations
Bander
Almutairi

Linear System
Augmented
Matrex
Elementary Row Operations

Mathod of
Solving Linear System

Guassian Elimination Method:

This method has two steps:
1 By elementary row operation we get

$$
\left[\begin{array}{llll}
a_{11} & a_{12} & a_{13} & b_{1} \\
a_{21} & a_{22} & a_{23} & b_{2} \\
a_{31} & a_{32} & a_{33} & b_{3}
\end{array}\right] \rightarrow\left[\begin{array}{cccc}
A_{11} & A_{12} & A_{13} & B_{1} \\
0 & A_{22} & A_{23} & B_{2} \\
0 & 0 & A_{33} & B_{3}
\end{array}\right]
$$

System of
Linear
Equations
Bander
Almutairi

Linear System
Augmented
Matrex
Elementary Row Operations

Mathod of
Solving Linear System

Guassian Elimination Method:

This method has two steps:
1 By elementary row operation we get

$$
\left[\begin{array}{llll}
a_{11} & a_{12} & a_{13} & b_{1} \\
a_{21} & a_{22} & a_{23} & b_{2} \\
a_{31} & a_{32} & a_{33} & b_{3}
\end{array}\right] \rightarrow\left[\begin{array}{cccc}
A_{11} & A_{12} & A_{13} & B_{1} \\
0 & A_{22} & A_{23} & B_{2} \\
0 & 0 & A_{33} & B_{3}
\end{array}\right]
$$

2 Find the solution by back subtitutions.

Example

Solve the following linear system by Guassian elimination method:

$$
\begin{aligned}
x_{1}+x_{2}+2 x_{3} & =8 \\
-x_{1}+2 x_{2}+3 x_{3} & =1 \\
3 x_{1}-7 x_{2}+4 x_{3} & =10 .
\end{aligned}
$$

System of
Linear
Equations
Bander
Almutairi

Linear System
Augmented
Matrex
Elementary Row
Operations
Mathod of
Solving Linear
System

Solution

Step 1:

System of
Linear
Equations
Bander
Almutairi
Linear System
Augmented Matrex
Elementary Row
Operations

Solution

Step 1:

Mathod of
Solving Linear
System

System of
Linear
Equations
Bander
Almutairi
Linear System
Augmented Matrex
Elementary Row
Operations

Solution

Step 1:

Mathod of
Solving Linear System

System of
Linear
Equations
Bander
Almutairi

Linear System
Augmented Matrex

Elementary Row Operations

Mathod of Solving Linear System

Solution

Step 1:

$$
\left[\begin{array}{cccc}
1 & 1 & 2 & 8 \\
-1 & -2 & 3 & 1 \\
3 & -7 & 4 & 10
\end{array}\right] \xrightarrow{R_{1}+R_{2},-R_{1}+R_{3}}\left[\begin{array}{cccc}
1 & 1 & 2 & 8 \\
0 & -1 & 5 & 9 \\
0 & -10 & 2 & -14
\end{array}\right]
$$

System of
Linear
Equations
Bander
Almutairi

Linear System
Augmented
Matrex
Elementary Row Operations

Mathod of Solving Linear System

Solution

Step 1:

$$
\left[\begin{array}{cccc}
1 & 1 & 2 & 8 \\
-1 & -2 & 3 & 1 \\
3 & -7 & 4 & 10
\end{array}\right] \xrightarrow{R_{1}+R_{2},-R_{1}+R_{3}}\left[\begin{array}{cccc}
1 & 1 & 2 & 8 \\
0 & -1 & 5 & 9 \\
0 & -10 & 2 & -14
\end{array}\right]
$$

$$
\xrightarrow{-R_{2}, 10 R_{2}+R_{3}}
$$

System of Linear
Equations
Bander
Almutairi

Linear System
Augmented Matrex
Elementary Row Operations

Mathod of Solving Linear System

Solution

Step 1:

$$
\begin{aligned}
{\left[\begin{array}{cccc}
1 & 1 & 2 & 8 \\
-1 & -2 & 3 & 1 \\
3 & -7 & 4 & 10
\end{array}\right] } & \xrightarrow{R_{1}+R_{2},-R_{1}+R_{3}}\left[\begin{array}{cccc}
1 & 1 & 2 & 8 \\
0 & -1 & 5 & 9 \\
0 & -10 & 2 & -14
\end{array}\right] \\
& \xrightarrow{-R_{2}, 10 R_{2}+R_{3}}\left[\begin{array}{cccc}
1 & 1 & 2 & 8 \\
0 & 1 & -5 & -9 \\
0 & 0 & -52 & -104
\end{array}\right]
\end{aligned}
$$

System of Linear
Equations
Bander
Almutairi

Linear System
Augmented Matrex
Elementary Row Operations

Mathod of Solving Linear System

Solution

Step 1:

$$
\begin{aligned}
{\left[\begin{array}{cccc}
1 & 1 & 2 & 8 \\
-1 & -2 & 3 & 1 \\
3 & -7 & 4 & 10
\end{array}\right] } & \xrightarrow{R_{1}+R_{2},-R_{1}+R_{3}}\left[\begin{array}{cccc}
1 & 1 & 2 & 8 \\
0 & -1 & 5 & 9 \\
0 & -10 & 2 & -14
\end{array}\right] \\
& \xrightarrow{-R_{2}, 10 R_{2}+R_{3}}\left[\begin{array}{cccc}
1 & 1 & 2 & 8 \\
0 & 1 & -5 & -9 \\
0 & 0 & -52 & -104
\end{array}\right]
\end{aligned}
$$

$$
\xrightarrow{-\frac{1}{52} R_{3}}
$$

System of Linear
Equations
Bander
Almutairi

Linear System
Augmented Matrex
Elementary Row Operations

Mathod of Solving Linear System

Solution

Step 1:

$$
\begin{array}{rccc}
{\left[\begin{array}{cccc}
1 & 1 & 2 & 8 \\
-1 & -2 & 3 & 1 \\
3 & -7 & 4 & 10
\end{array}\right]}
\end{array} \begin{aligned}
& \xrightarrow{R_{1}+R_{2},-R_{1}+R_{3}}\left[\begin{array}{cccc}
1 & 1 & 2 & 8 \\
0 & -1 & 5 & 9 \\
0 & -10 & 2 & -14
\end{array}\right] \\
& \\
& \\
& \\
& \\
& \\
& \\
&
\end{aligned}
$$

Now the equivalent system of equations is:
Bander Almutairi

Linear System
Augmented
Matrex
Elementary Row
Operations
Mathod of
Solving Linear
System

System of Linear Equations

Bander Almutairi

Linear System
Augmented Matrex
Elementary Row Operations

Mathod of Solving Linear System

Now the equivalent system of equations is:

$$
\begin{aligned}
x_{1}+x_{2}+x_{3} & =8 \\
x_{2}-5 x_{3} & =-9 \\
x_{3} & =2
\end{aligned}
$$

System of Linear Equations

Bander Almutairi

Linear System
Augmented
Matrex
Elementary Row Operations

Mathod of
Solving Linear System

Now the equivalent system of equations is:

$$
\begin{aligned}
x_{1}+x_{2}+x_{3} & =8 \\
x_{2}-5 x_{3} & =-9 \\
x_{3} & =2
\end{aligned}
$$

Step 2: Back subtitution:

System of Linear
Equations
Bander
Almutairi

Linear System
Augmented
Matrex
Elementary Row Operations

Mathod of Solving Linear System

Now the equivalent system of equations is:

$$
\begin{aligned}
x_{1}+x_{2}+x_{3} & =8 \\
x_{2}-5 x_{3} & =-9 \\
x_{3} & =2
\end{aligned}
$$

Step 2: Back subtitution:

$$
\begin{aligned}
& x_{3}=2 \\
& x_{2}=5 x_{3}-9=10-9=1 \\
& x_{1}=-x_{2}-2 x_{3}+8=-1-4+8=3
\end{aligned}
$$

Now the equivalent system of equations is:

$$
\begin{aligned}
x_{1}+x_{2}+x_{3} & =8 \\
x_{2}-5 x_{3} & =-9 \\
x_{3} & =2
\end{aligned}
$$

Step 2: Back subtitution:

$$
\begin{aligned}
& x_{3}=2 \\
& x_{2}=5 x_{3}-9=10-9=1 \\
& x_{1}=-x_{2}-2 x_{3}+8=-1-4+8=3
\end{aligned}
$$

Solution of the system is: $x_{1}=3, x_{2}=1, x_{3}=2$.

System of Linear Equations

Bander Almutairi

Linear System
Augmented Matrex
Elementary Row Operations

Mathod of
Solving Linear System

Exercise:Use Guassian elimination method to solve:

$$
\begin{aligned}
x+8 y+2 z & =7 \\
2 x+4 y-4 z & =3 \\
z+y+2 x & =2
\end{aligned}
$$

System of Linear Equations

Bander Almutairi

Linear System
Augmented Matrex
Elementary Row Operations

Exercise:Use Guassian elimination method to solve:

$$
\begin{array}{r}
x+8 y+2 z=7 \\
2 x+4 y-4 z=3 \\
z+y+2 x=2
\end{array}
$$

Example

Suppose the points $(-2,1),(-1,2),(1,2)$ lie on parabola

$$
y=a+b x+c x^{2}
$$

1 Determine a linear system in 3 variables a, b, c.
2 Fined the equation of parabola by solving the linear system.

