
Information and Software Technology 54 (2012) 651–662
Contents lists available at SciVerse ScienceDirect

Information and Software Technology

journal homepage: www.elsevier .com/locate / infsof
Software quality trade-offs: A systematic map

Sebastian Barney a,b,⇑, Kai Petersen a, Mikael Svahnberg a, Aybüke Aurum b, Hamish Barney b

a Blekinge Institute of Technology, Sweden
b School of Information Systems, Technology and Management, University of New South Wales, Australia

a r t i c l e i n f o a b s t r a c t
Article history:
Received 2 August 2011
Received in revised form 20 January 2012
Accepted 23 January 2012
Available online 2 February 2012

Keywords:
Software engineering
Software quality
Trade-off approaches
0950-5849/$ - see front matter Crown Copyright � 2
doi:10.1016/j.infsof.2012.01.008

⇑ Corresponding author at: School of Information S
E-mail addresses: s.barney@unsw.edu.au (S. Barn

hamish@student.unsw.edu.au (H. Barney).
Background: Software quality is complex with over investment, under investment and the interplay
between aspects often being overlooked as many researchers aim to advance individual aspects of soft-
ware quality.
Aim: This paper aims to provide a consolidated overview the literature that addresses trade-offs between
aspects of software product quality.
Method: A systematic literature map is employed to provide an overview of software quality trade-off
literature in general. Specific analysis is also done of empirical literature addressing the topic.
Results: The results show a wide range of solution proposals being considered. However, there is insuf-
ficient empirical evidence to adequately evaluate and compare these proposals. Further a very large
vocabulary has been found to describe software quality.
Conclusion: Greater empirical research is required to sufficiently evaluate and compare the wide range of
solution proposals. This will allow researchers to focus on the proposals showing greater signs of success
and better support industrial practitioners.

Crown Copyright � 2012 Published by Elsevier B.V. All rights reserved.
Contents
1. Introduction . 652
2. Background. 652
2.1. Summary of previous reviews . 652
2.2. Research questions . 652
3. Method . 653

3.1. Research process . 653
3.2. Databases, keywords and search strings . 653
3.3. Inclusion and exclusion criteria . 654
3.4. Data extraction for Phase 1 . 655
3.5. Data extraction for Phase 2 . 655
3.6. Validity threats . 655
4. Phase 1: Results and discussion of all publications . 656

4.1. Key publication venues . 656
4.2. Key researchers . 656
4.3. Research approach and focal development artefacts . 656
4.4. Quality aspects studied . 657
4.5. Trade-off approaches. 657
4.6. Systematic mapping discussion . 657
5. Phase 2: Results and discussion for empirical publications . 658

5.1. Trade-off approaches. 658
5.2. Aim of publications . 659
5.3. Academic rigour and industrial relevance . 659
6. Conclusion . 660
012 Published by Elsevier B.V. All rights reserved.

ystems, Technology and Management, University of New South Wales, Australia. Tel.: +61 2 93857124.
ey), kai.petersen@bth.se (K. Petersen), mikael.svahnberg@bth.se (M. Svahnberg), aybuke@unsw.edu.au (A. Aurum),

http://dx.doi.org/10.1016/j.infsof.2012.01.008
mailto:s.barney@unsw.edu.au
mailto:kai.petersen@bth.se
mailto:mikael.svahnberg@bth.se
mailto:aybuke@unsw.edu.au
mailto:hamish@student.unsw.edu.au
http://dx.doi.org/10.1016/j.infsof.2012.01.008
http://www.sciencedirect.com/science/journal/09505849
http://www.elsevier.com/locate/infsof

652 S. Barney et al. / Information and Software Technology 54 (2012) 651–662
Acknowledgements . 660
References . 660
1. Introduction

Software quality is far more complex than acknowledged by
much of the literature addressing the topic. The interplay between
software quality aspects are often overlooked as many researchers
aim to increase individual aspects of software quality. The prob-
lems associated with under investment are obvious, but over
investment is also problematic [57,52]. Insufficient quality leads
to a useless product. As the level of quality increases the product
become useful, and some point the level of quality can give the
product a competitive advantage. However, beyond a certain point
the level of quality becomes excessive—requiring high levels of
investment, but not providing any competitive advantage, or suffi-
cient business value to offset the required cost.

Given both the importance and complexity involved in achiev-
ing the right balance of software quality there is value in consoli-
dating the research addressing software quality trade-offs.
Consolidating the knowledge will help practitioners access the ap-
proaches to software quality trade-off that are most suitable to
their given context, and identify research gaps that academics
can focus greater study. Thus, this paper aims to provide an over-
view of the approaches used in software quality trade-offs, and the
level of empirical evidence currently provided.

A systematic map of the software quality trade-off literature has
been developed to understand the state of the research addressing
this area. The analysis was done in two phases, with Phase 1 pro-
viding an overview of the literature addressing the topic in general
and Phase 2 provding an overview of the empirical literature
addressing the topic.

The remainder of this paper is structured as follows. The back-
ground to the study is presented in Section 2. The systematic map-
ping process is detailed in Section 3. The results and discussion for
Phase 1 are presented in Section 4 with the Phase 2 presented in
Section 5. Conclusions drawn in Section 6.

2. Background

Quality is a complex and multifaceted concept [22]. This holds
true for software.

Thesoftwaredevelopmentindustryhastraditionallydefinedsoft-
ware quality as ‘fit for purpose’ or ‘conforming to specification’ [26].
Mostresearchonsoftwarequality focusesonimprovingandoptimis-
ing individual aspects of software product quality (e.g. maintainabil-
ity, security, or usability). However, achieving the highest level of
qualityagainst a modelor set of measuresdoes not ensure a sufficient
level of quality will be achieved [57]—it is possible that the required
level of quality is higher than that assumed by any given model or
measure. Further, such sub-optimisation of software product
improvements does not always make sense. Improving one aspect
of software quality can cause improvements or degradation to other
aspects of software quality [31,57].

There are numerous models of software quality to support the
software development process [33]. Commonly cited models in-
clude McCall’s Quality Model, Boehm’s Quality Model, Dromey’s
Quality model and ISO9126 [29]. Most quality models are pre-
sented in a hierarchy of attribute, sub-attributes and occasionally
metrics. Further, it is recommended that any quality model should
be tailored to any specific context in which it is used.

More recently software engineering research has emphasised
the need to consider software quality from a range of different per-
spectives and take a value-based approach to software quality [9].
This means ensuring that the level of quality delivered is accept-
able to all the stakeholders upon whom the success of the product
depends.

The value of a shared understanding of software quality be-
tween key stakeholders is increasingly being recognised. Organisa-
tions with highly aligned individuals and groups have been found
to significantly outperform those organisations that do not share
these high levels of alignment [13]. However, achieving and main-
taining alignment is an ongoing activity as priorities will naturally
change over time for numerous reasons [12].

There are numerous approaches to reconciling conflicts be-
tween between aspects of software product quality. Some of the
most common include expert judgement, the Non-Functional
Requirements (NFR) Framework, Quality Function Deployment
(QFD) and Theory W.

Expert judgement involves one or more experienced profession-
als using their experiences and knowledge to make a decision on
an issue. The decisions are not necessarily supported by modelling
or numerical assessment.

The NFR Framework uses diagrams to relate non-functional
requirement goals with different decisions that can be made in
the design and operation of a system that affect it positively or
negatively, allowing trade-offs to be identified and made [15].
While this method makes the results of a choice to be made more
explicit, it requires a set of common priorities to be identified to
allow effective decisions to be made.

Quality function deployment (QFD) considers the priority of
customer and technical requirements in achieving the goals of
the system to help prioritise the requirements [24]. However, the
other perspectives involved in the development of the software
product are not considered.

Value-based software engineering (VBSE) recognises the prob-
lems created by conflicting perspectives in the software
development process [8]. Central to resolving conflict in VBSE is
Theory-W [9], which involves identifying the success-critical
stakeholder, determining a mutually acceptable set of objectives,
and then working to ensure these objectives are achieved.

2.1. Summary of previous reviews

At the time of writing the authors were only able to find one
systematic review addressing the issue of software quality trade-
off decisions and analysis—published by Berntsson Svensson
et al. [6]. This publication addresses the more general topic of soft-
ware quality management, but specifically aims to address issues
of prioritisation between aspects of software quality. However,
on the topic of software quality prioritisation this review was only
able to identify three relevant articles. This weakness is caused by
the limited number of keywords used to define the prioritisation
concept within the search string.

The authors hope that by conducting a more focused and de-
tailed study, the topic of software quality trade-off decisions and
analysis can be better understood.

2.2. Research questions

The aims of this paper are twofold.
In Phase 1 this paper aims to provide an overview of the recent

literature addressing software quality trade-offs. This aim is

S. Barney et al. / Information and Software Technology 54 (2012) 651–662 653
represented by the first research question, which is further divided
into sub-research questions:

� RQ1. What is the state of the art with respect to software qual-
ity trade-off literature?
– RQ1.1. What are the common publication fora?
– RQ1.2. Who are the key researchers in the field?
– RQ1.3. Which research approaches are employed?
– RQ1.4. During which development phase does literature

suggest for software quality trade-offs to takes place?
– RQ1.5. Which approaches are presented in the literature?

Phase 2 of the research aims to provide a specific description of
the empirical literature addressing software quality trade-offs. This
aim is presented as the second research question and divided into
sub-research questions:

� RQ2. What is the state of the art for empirical research address-
ing software quality trade-offs?
– RQ2.1. Which approaches in the literature have been empir-

ically studied?
– RQ2.2. What are the aims of the empirical work?
– RQ2.3. What level of academic rigour and industrial

evidence is present in the empirical work?
Identify
Keywords

Search
Strings

IEEE
Xplore

ACM
Digital
Library

...

List of
Papers

Remove
Duplicates

Updated
List

Review
icts

Updated
List

Classify
Papers

Phase 1
Paper

Phase 2

Review
Abstracts

Updated
List

Select
Databases DB List

Fig. 1. Research process.
3. Method

The systematic mapping process is used to address the research
questions posed in this paper. A systematic map can provide an
overview of the literature addressing software quality trade-offs
and can also be used to identify empirical publications addressing
software quality trade-off literature. It can then be used to provide
a detailed description of the identified publications, answering
RQ2.

3.1. Research process

The methodology employed in this work is based on the sys-
tematic review guidelines presented by Kitchenham [32]. It has
been further informed and shaped by the experiences of Dybå
and Dingsøyr [20], Petersen et al. [47], Riaz et al. [53].

The following procedure was followed in conducting the sys-
tematic mapping:

1. First bibliographic databases were selected from which to
search for publications. The rationale and choices are presented
in Section 3.2.

2. Keywords describing the research area were identified, and
search strings were created for the selected databases. This pro-
cess is described in Section 3.2.

3. The search strings were then run against the databases, with
the bibliographic information for all resultant publications
extracted and saved.

4. The list of publications from each database were combined,
with duplicate records for a publication removed.

5. The title and abstracts of each publication was then reviewed
by two reviewers against a set of inclusion and exclusion crite-
ria. This process is described in Section 3.3.

6. Publications that were marked for both inclusion and exclusion
were then re-reviewed and selected for inclusion or exclusion,
as described in Section 3.3.

7. The resultant list of publications were then classified for the
systematic map. This process is described in Section 3.4.

8. Finally a data extraction was undertaken on the relevant publi-
cations. This process is described in Section 3.5.

A summary of this process is provided in Fig. 1.

3.2. Databases, keywords and search strings

After defining the research questions, the first step of conduct-
ing the systematic map and review was to identify the set of dat-
abases to be used to find publications. As this systematic review
addresses software engineering, databases were selected for their
coverage and use in this domain. The following set of databases
were selected to identify relevant publications:

� ACM Digital Library
� Compendix/Inspec
� IEEE Xplore
� ISI Web of Science
� Scopus

While the authors wanted to include SpringerLink, this database
was excluded due to its inability to handle complex queries.

The next step was to identify the set of keywords. These key-
words are used to create search strings, which are run against
the selected publication databases.

Keywords were identified in an iterative approach with several
steps. First, relevant papers were identified, and appropriate

Table 1
Search string keywords.

Category Label Keyword(s)

C1 Software Software
C2 Engineering Engineering, development, product, service, system
C3 Product

Quality
ISO9126, ISO 9126, ISO-9126, IEC9126, IEC 9126, IEC-9126, non-functional+(artefacts, artifacts, aspects, attributes, capabilities,
characteristics, factors, features, properties, requirements, traits), all ISO 9126 quality aspect pairs

C4 Trade-offs Tradeoff, ‘‘trade off’’, ‘‘trade-off’’, priorit⁄, balance, collaborat⁄, compromis⁄, ‘‘cumulative voting’’, ‘‘analytic hierarchy process’’, AHP, vote,
voting

Table 2
Results from each database.

Database Publications

ACM Digital Library 113
Compendix/Inspec 493
IEEE Xplore 965
ISI Web of Science 108
Scopus 1248

Total 2930

654 S. Barney et al. / Information and Software Technology 54 (2012) 651–662
keywords were extracted. Then thesauri were used to identify
additional keywords based on the extracted keywords. Search
strings were then created and run against various databases to
identify additional relevant publications. This process was re-
peated until there were no significant developments to the key-
words. This process was conducted by the first author, and then
reviewed by coauthors.

The keywords were classified into four groups—software (C1),
engineering (C2), product quality (C3) and trade-offs (C4). These cat-
egories and the final list of keywords are presented in Table 1. To
increase readability, all of the three word combinations starting
non-functional or non functional are listed together without repeat-
ing the the first two words. Further, each pair of ISO 9126 aspects
was inserted. The AND operator was used between the two items
making each pair, while the OR operator was used between each
pair.

The search string was created by putting the OR operator be-
tween all of the words or phases within each category, and putting
the AND operator between each category. Thus the main search
string was composed as:

C1 AND C2 AND C3 AND C4

where, for example, C2 was composed as:

ðengineeringORdevelopmentORproductORserviceORsystemÞ

The search queries were further limited to publications printed
in 2005–2010. The authors considered this six-year period to cover
‘recent’ publication, and that any previously identified approach
not revisited during this time unlikely to be still be considered
relevant.

Applying the searches created from this process to the selected
databases yielded 2930 publication, as presented in Table 2. Com-
bining the results from each database and removing duplicates re-
duced this list to 2153 publications. However, further duplicates
were found later in the process.

3.3. Inclusion and exclusion criteria

The 2153 publications identified by the search strings were
then reviewed against a set of inclusion and exclusion criteria.

The inclusion and exclusion criteria were developed in a review
of publications from 2009 by the first author. Articles were re-
viewed with rules being developed and refined to support the
decision making process. These rules were then reviewed and
agreed upon by the coauthors.

The final set of rules, applied to the review of all abstracts, is set
out below:

� Included results must be in English.
� Included results must not come from an excluded source:

– Books are excluded, however, book chapter from an edited
volume may be included.

– Forewards are excluded regardless of their source.
– Editorials are excluded.
� Included results must address software development.
� Included results must address multiple aspects of software

product quality (for example, see ISO9126 [29]).
– Aspects of product quality not relating to a software product

are out of scope in this study (e.g. the reliability of a car is
out of scope, but the reliability of the software running a
car is in scope).

– Aspects of service quality that do not directly relate to soft-
ware product quality are out of scope in this study (e.g. reli-
ability can be considered an aspect of service quality and
product quality, customer service does not).

– Aspects of process quality that do not directly relate to soft-
ware product quality are out of scope in this study (e.g. hav-
ing a reliable process is different to having a reliable
product).

� Included results must address trade-offs between at least two
aspects of software product quality.
– Results that allow direct comparisons between aspects of

software product quality can be included in this study.
– Results only seeking to improve one or more aspects of soft-

ware product quality without a trade-off between them are
excluded from this study.

– Results that perform trade-offs between a single aspect of
software product quality and some aspect non-software
product quality aspects are excluded.

– Results that perform trade-offs between multiple aspects of
software product quality and an other aspect or aspects are
included.

Each publication received two independent reviews against the
inclusion and exclusion criteria. The first author reviewed all pub-
lications, while the other four authors each reviewed one quarter
of the publications. In this process 140 publications were marked
in scope, while 1866 publications were marked as out of scope
and 147 publications had conflicting reviews.

Where the two reviews were in agreement a publication no fur-
ther action was taken, with the paper being marked in or out of
scope as appropriate. The 147 publications with conflicting reviews
were given to the second and third authors to get a third and final
assessment. The second author reviewed all 133 publications not
previously reviewed by this author, marking 36 in scope.The third
author reviewed the 14 publications with conflicting reviews that
had previously been reviewed by the second author, marking 3 in
scope. This resulted an additional 39 publications being marked

Table 3
Reasons for exclusion during mapping process.

Reason Number

Less than two quality aspects studied 3
Previously unidentified duplicates 2
Process quality, not software quality 2
Foreward (excluded source) 2
Publication not in English 1

S. Barney et al. / Information and Software Technology 54 (2012) 651–662 655
in scope, giving a grand total of 179 publications being marked in
scope.

3.4. Data extraction for Phase 1

Having identified the papers in scope, the next step was to clas-
sify the publications for the systematic map—answering RQ1. For
each publication the following data was collected from the ab-
stract, unless otherwise stated:

� Qualities: The aspects of quality considered as part of the trade-
off in the publication.
� Trade-off approach: The approach used to support software

quality trade-offs. If this could not be determined from the
abstract, the introduction and conclusion where read.
� Development artefact: The development artefact to which the

trade-off was applied. The options considered were process,
requirements, architecture, code, test and runtime.
� Research approach: The research approach used according to the

classification system proposed by Wieringa et al. [61], as recom-
mended in Petersen et al. [47]. The research approaches are
opinion papers, philosphical papers, experience reports, solution
proposals, validation research and evaluation research. Where this
could not be confirmed, the introduction and conclusion were
read.
� Authors: The authors who wrote the publication.
� Venue: The publishing journal, conference, workshop or book.
� Year: The year of publication.

Given this study assesses peer-reviewed academic publications,
trust was placed in the ability of the authors to correctly classify
their own work with the support of the reviewers. For example,
if an author stated that a case study was conducted, this informa-
tion is assumed correct and was not the subject of further
validation.

An iterative classification process was used when collecting
data on the qualities considered and trade-off approach. The qualities
and approach studied in the first paper were documented in sepa-
rate lists. Each subsequent publication was assessed to determine
if it fitted within the list or, if required, a new item was added to
the appropriate list.

During the classification process 10 publications were excluded
for the reasons stated in Table 3. An additional publication was re-
moved during the Phase 2 analysis as it was found to apply ap-
proaches used in software industry to physical products. The
final list of publications totalled 168.

3.5. Data extraction for Phase 2

Each publication classified by the systematic mapping process
as empirical research was the subject of further study in Phase 2.

The full publication was reviewed, and the following informa-
tion was collected:

� The aim of the doing the software quality trade-off.
� The approach supporting the software quality trade-off.
� A brief description of the process used to conduct the software
quality trade-off.
� A brief description of the empirical evidence presented in the

paper.
� A classification of the paper against the rigour and relevance cri-

teria for empirical research in software engineering, as pro-
posed by Ivarsson and Gorschek [30].

In total 49 publications were identified from Phase 1 as within
scope of Phase 2, however, six of these papers were excluded upon
more detailed inspection:

� The full-text of one publication could not be obtained online or
after making contact with the authors. Thus, this publication
was excluded as it could not be studied further.
� Four publications incorrectly claimed to have conducted case

study research, but an analysis of the papers determined no
empirical work was presented.
� One publication was found to be erroneously included within

the scope of the study. This publication addresses quality
trade-offs for physical products using approaches that have
been applied in the software development industry.

The results for Phase 1 were updated for the publication that
was erroneously included in the study. There is no information
to suggest that the paper for which the full-text was not available
was incorrectly classified during Phase 1. To ensure a consistent ap-
proach was taken for all papers in Phase 1, the papers found to have
erroneously reported empirical studies were not reclassified.

3.6. Validity threats

The most significant threats to validity with a systematic map
are bias in the selection of publications and the data extraction
process [20]. To address these risks, a research protocol was de-
fined prior to conducting the research. The research protocol de-
fined the research questions to be answered, the databases to be
used, the search strings to be used, the inclusion and exclusion cri-
teria to be used, the resolution process where reviewers disagreed
and the data extraction process.

One of the risks faced by researchers conducting this type of re-
search in the software engineering domain is the lack of standard
language and terminology [20]. To reduce this risk keywords were
identified in an iterative process, using thesauri and publications to
identify synonyms that should be included in the list of keywords.
This activity was undertaken with the support of librarians special-
ising in software engineering.

Each paper was reviewed by at least two authors against the
inclusion and exclusion criteria to reduce the risk of a publication
being incorrectly included or excluded from the systematic map.
Where the authors had conflicting reviews, a third author was re-
quired to review the publication and make a final decision.

It is possible for authors to introduce bias during the data
extraction process. To reduce this risk, the authors of this study
based the data extraction on the words used in each publication
wherever possible.

This approach generated another threat to validity, with some
authors incorrectly using terms leading to the incorrect classifica-
tion of publications [47]. Four such situations were identified in
Phase 2 of this research. The results of Phase 1 were not updated
based on this result. This study does not aim to criticise the peer
review publication process, and updating records based on an anal-
ysis only applied to a subset of the publications from Phase 1 risked
introducing systematic biases. Further, a number of publications
did not contain sufficient data to independently verify claims made
by the authors, making it impossible to guarantee correct

656 S. Barney et al. / Information and Software Technology 54 (2012) 651–662
classification in these cases. Thus the authors referred to the infor-
mation as presented from the peer reviewed publication process.

4. Phase 1: Results and discussion of all publications

In total 168 publications identified and analysed as part of the
systematic map.

Splitting the publications by the year in which they were
published show a general increasing trend in the number of publi-
cations, peaking in 2009 with 42 publications. A breakdown of
these results is shown in Fig. 2. Comparing the 26 publications
for 2010 against the 41 publications for 2009 provides insufficient
data to know if this is the start of a downward trend or is an anom-
aly in the results.

4.1. Key publication venues

The 169 publications identified as part of the systematic map
were published at 121 different venues. Conferences were by far
the most common venue type with 106 publications, followed by
journals with 38 publications and then workshops with 24
publications.

The publication venues with more than two identified publica-
tions from the systematic map are listed in Table 4. This list of ven-
ues covers 24% of the identified publications. The venues include
six conferences, four journal and one workshop.

All of the venues with more than two identified publications are
focused on various aspects of software engineering. Some venues,
like the Software Quality Journal and the International Working
Conference on Requirements Engineering, focus on software quality.
However, none of the venues are focused specifically on trade-offs
within software engineering.

The list of venues presented in Table 4 are all highly ranked in
different fora. With the exception of the International Working
Conference on Requirements Engineering, all these venues are or
Fig. 2. Number of publications per year studied.

Table 4
Venues with more than two identified publications.

Type Venue

Conference ACIS International Conference on Software Engineering, Artificial I
Journal Information and Software Technology
Journal Journal of Systems and Software
Journal Software Quality Journal
Conference Asia–Pacific Software Engineering Conference
Conference International Conference on Software Engineering
Conference International Working Conference on Requirements Engineering
Journal IEEE Software
Conference Empirical Software Engineering and Measurement
Conference Euromicro—Software Engineering and Advanced Applications
Workshop International Workshop on Software Product Management
have been listed in the ISI Web of Knowledge, although not all years
of all conferences and workshops are listed. Further, all venues are
listed in the Australian Core Ranking for Information System, ex-
cept for ACIS International Conference on Software Engineering,
Artificial Intelligence, Networking, and Parallel/Distributed Computing.

4.2. Key researchers

The 168 publications included in the systematic map list 485
authors, which corresponds to 399 people. Most people were only
listed on one publication, but 64 people were listed on two or more
publications. The list of authors listed on three or more publica-
tions is presented in Table 5. with the number of publications with
which they are associated from the systematic map.

The results show a number research collaborations. Berntsson
Svensson and Regnell coauthored all six of the publications listed
under their name; Reussner and Martins coauthored four publica-
tions; Huang and Mei coauthored three publications; Barney and
Wohlin coauthored two publications; Davidsson and Svahnberg
coauthored two publications; and Svahnberg and Wohlin coau-
thored one publication.

4.3. Research approach and focal development artefacts

This section breaks the 168 identified publications by the re-
search approach taken and development artefact that is the focus
of the publication. The classification of research approach is done
using the classification system of Wieringa et al. [61]. Publications
were also linked to the development artefact to it most strongly re-
lated—process, requirements, architecture, code, testing or run-
time. The results of this analysis are presented visually in Fig. 3.

Within recent software quality trade-off research, solution pro-
posals stand out as the dominant research approach. This approach
is used in 61% of the identified publications. By contrast, the second
Publications

ntelligence, Networking, and Parallel/Distributed Computing 5
4
4
4
4
4
4
3
3
3
3

Table 5
Key researchers.

Rank Author Publications

1 Berntsson Svensson, Richard 6
1 Regnell, Björn 6
3 Reussner, Ralf 5
4 Martens, Anne 4
5 Barney, Sebastian 3
5 Daneva, Maya 3
5 Davidsson, Paul 3
5 Huang, Gang 3
5 Lee, Dan Hyung 3
5 Mei, Hong 3
5 Ramdane-Cherif, Amar 3
5 Svahnberg, Mikael 3
5 Wohlin, Claes 3

Process
24%

Requirements
17%

Evaluation
Research

20%

Architecture
49%

Test
2%

Code
3%

Runtime
5%

Validation
Research

8%

Solution
Proposal

61%

Experience
Report

2%

Philosophical
Paper

5%

Opinion
Paper

3%

55517

1

1

1 1

2

22

33

3

3

4

65

5

14

21

Development
Artefact

168 (100%)

Research
Facet

14

Fig. 3. Number of publications per research facet and development artefact.

Table 7
Approaches studied.

Approach Publications

Analytical Hierarchy Process (AHP) based 22
Model-based 22
Multiple 11
Algorithmic-based 9
Architecture Tradeoff Analysis Method (ATAM) based 8
Metrics-based 7
Expert opinion 5
QFD-based 5
Prototyping 4

S. Barney et al. / Information and Software Technology 54 (2012) 651–662 657
most common research approach approach used is evaluation re-
search, covering 20% of the publications. Of the remaining publica-
tions, 8% employ validation research, 5% present philosophical
papers, 3% present opinion papers and 2% present experience reports.

When breaking down the papers by development artefact, an-
other strong tendency is observed. At 49%, almost half of the iden-
tified publications look at software quality trade-offs within the
architecture domain. The second most common development arte-
fact address by recent software quality trade-off is the software
development process, with 24% of publications, followed by
requirements engineering with 17% of publications. Little attention
has been given to software quality trade-offs at runtime, in code
and during testing, with 5%, 3% and 2% of the identified publications
respectively addressing these development artefacts.

Looking at the identified publications in terms of both the re-
search approach and the development artefact provides some
interesting insights. Given the clear focus on the architecture devel-
opment artefact, one might expect a greater level of maturity with
research, with a higher proportion of empirical research. This was
not the case, however, with only 24% of publications addressing
the architecture development aspects employing validation or eval-
uation research. The comparison values for the process and require-
ments development artefacts are 36% and 32% respectively.

4.4. Quality aspects studied

Publications were classified according the aspects of software
quality covered in the abstract. A break-down of these results is
provided in Table 6.

From the abstracts, most papers address software quality as-
pects generally—this includes aspects of quality (e.g. ISO 9126)
and quality requirements (e.g. boot time must be less than three
Table 6
Quality aspects studied.

Quality aspects Publications

Software quality 98
Requirements 23
Quality requirements 21
ISO 9126 13
Specific pair 9
Specific group 4
seconds). For most publications it was not possible to ascertain
which specific qualities were studied from the abstract. Quality as-
pects and quality requirements were combined as it was not pos-
sible to differentiate this level of detail from the abstracts given the
range and manner in which terms used to describe software qual-
ity. Papers specifically mentioning ISO 9126 in the abstract were
separated from this group, with 13 publication identified (8%)
using this quality model specifically.

Requirements more generally, and specifically including quality
requirements, are address in 23 publications (14%).

In total 9 publications (5%) addressed specific pairs of quality.
Only the performance/reliability pair was studied more than once,
with two publications. However, performance was the most com-
monly studied quality aspects in this group, included in five
publications.

Specific groups of quality were studied in four publications (2%).
Of these two addressed groups of quality aspects relating to secu-
rity, with the others addressing different sets of aspects.
4.5. Trade-off approaches

A very wide array of trade-off approaches have been employed
in the identified publications. The most commonly employed ap-
proaches are listed in Table 7, with the corresponding number of
publications. This list covers 55% of the identified publications.

However, this list presents a simplified view of the approaches
taken. For example, within the model-based approaches different
models are used (e.g. UML, other architectural models) and the
models are used in different ways to make the trade-off. Similarly
the AHP-based trade-off approaches varied in their implementa-
tion. Expanding out the list of approaches to identify each unique
approach would result in almost as many approaches as identified
publications.

A selection of some of the approaches used in the other papers
include an agent-based approach, artificial intelligence (AI) based
approaches, game theory, a goal-question-metric (GQM) based ap-
proach, optimisation theory, Pareto curves, a perspective-based ap-
proach, a risk-driven approach, search-based techniques, utility
theory and various statistical methods.
4.6. Systematic mapping discussion

The greatest surprise for the authors in conducting this research
was the range of trade-off approaches used in the publications
identified. While the authors had hoped to develop a classification
of different approaches for software quality trade-offs, this proved
neither feasible nor useful give the diverse range. This result sug-
gests that there is an immaturity in the field in that no trade-off ap-
proach or set of approaches have emerged as candidates to
dominate the research space.

While it is positive to see such a wide range of trade-off ap-
proaches are being considered, it creates concern that a clear

Table 8
Publications by development artefact and trade-off approach.

658 S. Barney et al. / Information and Software Technology 54 (2012) 651–662
majority of the research (61%) is classified as solution proposals. By
contrast only 28% of the publications identified present empirically
validated results, either validation research or evaluation research.
While it is important in immature fields to consider a wide range
of options, the lack of empirical research means only limited com-
parisons can be made between the strengths and weaknesses of
the various techniques. More information on how each method
performs in practice would allow for greater focus on the methods
displaying greater strength. Ultimately, the aim of any engineering
should be to develop and refine something of use.

The next question is to ask why so many of the solution propos-
als are not being submitted to empirical validation. There are a
number of possible reasons for this result. Firstly, it is easier to pro-
pose a solution, than to propose and validate/evaluation a solution.
However, methods that could be of value should be used, confirm-
ing if indeed this is the case. Secondly, it is generally easier to pub-
lish positive results than negative ones. This situation is
unfortunate, as negative results would allow researchers and prac-
titioners alike to better navigate the set of solution proposals.

Another interesting result is the very dominant focus of the
quality trade-off approaches on the earlier phases of software
development—process, requirements and architecture. This result
is logical, as the earlier trade-offs are identified and made, the
greater the range of options for dealing with the trade-offs in ques-
tion. Further, problems are very costly to fix later. For example, if
the architecture is wrong, then trying to fix the problem at runtime
may not be possible.
Artefact Approach Reference

Process AHP-based [14]
[59]

Automated negotiaton [45]
SAAM-SQ [2]

[1]
Expert opinion [60]
Metrics [34]
Model-based [62]
Ranking [54]

Requirements AHP-based [37]
[44]

Approaches used in practice [5]
QUPER Model [51]

[4]
[7]

Negotiation/collaboration [36]
Networked systems survivability [41]
5. Phase 2: Results and discussion for empirical publications

This section presents an overview of the publications that pres-
ent empirical results towards addressing software quality trade-
offs for the process and requirements artefacts—addressing RQ2.
While Phase 1 identified 48 empirical publications, only 43 are
the subject of study in this section. Four publications were incor-
rectly classified by their authors as containing empirical work,
and the full-text of one publication could not be sourced for further
review.

The remainder of this section presents the results and discus-
sion in terms of the trade-off approaches studied, the aims of the
research, and the academic rigour and industrial relevance of the
research.
Prospect theory [21]
Prototyping [43]
QFD-based [48]

Architecture AHP-based [17]
Algorithmic [27]

[38]
[40]
[55]

ATAM-based [10]
[39]

Expert opinion [56]
Goal structuring notation [3]
Metrics [11]
Model-based [16]

[64]
Multiple [23]

[28]
Prototyping [58]
Replication [63]
Search-based [19]
SPE [18]

Code Algorithmic optimisation [42]
Metrics [35]

Runtime Algorithmic [25]
[49]
[50]
5.1. Trade-off approaches

The first aim of Phase 2 was to assess the software quality trade-
off approaches that have empirically studied. A summary of these
results is provided in Table 8, broken down by development
artefact.

The results show a diverse range of approaches to address soft-
ware quality trade-offs with respect to the software development
process and requirements. AHP is the most widely applied ap-
proach, being used by three different groups of researchers in three
different contexts. The QUPER model is empirically assessed in an
equal number of publications, but all this work has been done by
the same group of researchers and two of the papers study a sim-
ilar context.

Similarly a diverse range of approaches has been employed to
address the architecture artefact. AHP is the only method found
to be reused between multiple artefacts—process, requirements
and architecture. However, there are similarities between a num-
ber of methods. The most used empirically research approaches
focusing on architecture are automated generation of alternative
architectures, SOA service pool management, ATAM and AHP.
AHP is further proposed for use in selecting algorithms by one
of the paper classified as applying to the code and runtime
artefacts.

None of the approaches stands out as dominating the research
landscape, although AHP appears to be the most robust method,
used against a number of development artefacts. In the absence
of a clear direction it appears that researchers are looking for
new and improved solution to empirically validate. However, the
two publications that assess software quality trade-offs in different
software packages for the procurement process use the AHP
method.

There appear to be a number of common elements in the ap-
proaches used for software quality trade-offs. For the process and
requirements artefacts a number of papers cite the need to create
or tailor a quality model to a specific context before it can be used,
and many papers also highly recommend the involvement of a di-
verse range of stakeholders when developing or tailoring a quality
model and making trade-off decisions. Many groups are affected,
and each in different ways—so by bringing everyone together it
helps ensure a more mutually acceptable goal.

For the architecture artefacts, the general rules are to define the
goals that need to be achieved, and then assess the ability for var-
ious architectures to meet these goals. This work should be used to

Table 9
Approaches applied in the research from each phase.

Approach Phase 1 (%) Phase 2 (%)

AHP 13 12
Model-based 13 14
Multiple 7 5
Algorithmic-based 5 14
ATAM-based 5 5
Metrics-based 4 7
Expert opinion 3 5
QFD-based 3 2
Prototyping 2 2

Table 10
Rigour and relevance classification system.

Area Aspect Acronym

Rigour Context described Ri1
Study design described Ri2
Validity discussed Ri3

Relevance Subjects Re1
Context Re2
Scale Re3
Research method Re4

0 1

0.0

2 43
Relevance

Rigour

0.5

1.0

1.5

2.0

2.5

3.0

1

1

2

1

2

1

2

4

1

1

1

4

4

2

3

4

1

3

4

1

Fig. 4. Rigour and relevance evaluation of empirical publications.

Table 11
Rigour and relevance classification of empirical publications.

Paper Rigour Relevance Totals

Ri1 Ri2 Ri3 Re1 Re2 Re3 Re4 Ri Re

[2] 0.5 1.0 1.0 1 1 1 1 2.5 4
[1] 0.5 1.0 0.0 1 1 1 1 1.5 4
[3] 0.0 1.0 0.0 0 0 0 0 1.0 0
[4] 1.0 1.0 1.0 1 1 1 1 3.0 4
[5] 0.5 1.0 1.0 1 1 0 1 2.5 3
[7] 1.0 1.0 1.0 1 1 1 1 3.0 4
[10] 1.0 1.0 0.5 1 1 1 1 2.5 4
[11] 0.5 0.5 0.5 0 0 1 0 1.5 1
[16] 0.5 0.5 0.0 0 0 1 0 1.0 1
[14] 1.0 0.5 0.0 0 1 1 1 1.5 3
[17] 1.0 1.0 0.5 1 1 1 1 2.5 4
[18] 1.0 1.0 0.5 1 1 1 1 2.5 4
[19] 0.5 0.5 0.0 1 1 1 0 1.0 3
[21] 1.0 1.0 1.0 0 0 0 0 3.0 0
[23] 1.0 1.0 0.5 0 0 0 0 2.5 0
[25] 0.5 0.5 0.0 0 0 0 0 1.0 0
[27] 0.5 0.5 0.0 0 0 0 0 1.0 0
[28] 0.0 0.5 0.0 0 0 0 0 0.5 0
[34] 0.5 0.0 0.5 1 1 1 1 1.0 4
[35] 0.5 1.0 0.5 0 0 0 0 2.0 0
[36] 0.5 1.0 0.0 1 1 0 1 1.5 3
[37] 0.0 0.0 0.0 0 0 0 0 0.0 0
[38] 0.0 0.5 0.0 0 0 0 0 0.5 0
[39] 0.5 0.5 0.0 0 0 1 0 2.0 1
[40] 0.5 0.5 1.0 0 0 1 0 2.0 1
[41] 0.5 0.5 0.0 0 1 1 1 1.0 3
[42] 0.5 0.5 0.0 0 0 1 0 2.0 1
[43] 1.0 1.0 0.0 0 0 1 0 2.0 1
[44] 1.0 1.0 0.0 1 1 1 1 2.0 4
[45] 0.5 0.0 0.0 0 0 0 0 0.5 0
[48] 0.5 1.0 0.0 1 0 1 1 1.5 3
[49] 0.5 0.5 0.0 0 0 1 0 1.0 1
[50] 0.5 0.5 0.0 0 0 1 0 1.0 1
[51] 0.5 0.5 0.0 1 1 0 1 1.0 3
[54] 0.5 1.0 0.5 1 1 1 1 2.0 4
[55] 0.5 0.5 0.0 0 0 0 0 1.0 0
[56] 1.0 1.0 1.0 0 0 0 0 3.0 0
[58] 0.0 0.0 0.0 0 0 0 0 0.0 0
[59] 1.0 1.0 0.0 1 1 1 1 2.0 4
[60] 0.5 0.5 1.0 1 1 1 1 2.0 4
[62] 0.0 0.0 0.0 1 1 1 1 0.0 4
[63] 0.5 0.0 0.0 0 0 0 0 0.5 0
[64] 0.5 0.5 0.0 0 0 1 1 3.0 2

Totals 24.5 28.0 12.0 18 19 26 20 68.5 83

S. Barney et al. / Information and Software Technology 54 (2012) 651–662 659
think creatively about alternative solution that may better meet
the needs of the system under development.

The research also highlights that any trade-off decision is very
particular to its context. Embedded systems face different chal-
lenges to web-based systems and combat management systems.
This emphasis the need for greater empirical work in this area, as
methods will need to be robust in dealing with such a diverse
range of contexts.

It is also possible to compare the software quality trade-off ap-
proaches used in publications from Phase 1 with those empirically
assessed in Phase 2. The results, presented in Table 9, show a very
similar distribution for the most studied approaches. The only
notable exception is that only 5% of publications from Phase 1
use an algorithmic-based approach, while 14% of the publication
from Phase 2 use such an approach. It is possible that algorith-
mic-based approaches are relatively easier to assess empirically,
and thus are relatively overrepresented in Phase 2.

5.2. Aim of publications

The second aim was to determine the aim of researchers con-
ducting empirical software quality trade-off research. The results
show a diverse range of research objectives within the research
space surveyed. The most commonly cited objectives for the pro-
cess and requirements artefacts were to determine the priorities
on the qualities to better understand the quality requirements.
Some papers sought to take this further, by using this information
to provide improvement suggestions, or put quality requirements
on the development roadmap.

Most publications focusing on the architecture artefacts aimed
to provide general approaches to assist in the assessment of vari-
ous architectures in their ability to meet different quality goals.
However, a small number of papers presented finding from specific
cases researchers had sought to resolve.

The papers addressing the code and runtime artefacts were
much more technical in nature—mainly providing or testing algo-
rithms to support software quality trade-offs.

5.3. Academic rigour and industrial relevance

Each paper included in Phase 2 was given a rating according to
its rigour and relevance, as defined by Ivarsson and Gorschek [30].
Rigour refers to the the extent and detail that context is explained
in the publication. It is possible for a publication to score poorly if

660 S. Barney et al. / Information and Software Technology 54 (2012) 651–662
the research was rigorous, but insufficient information was de-
tailed in the publication. Relevance evaluates the potential for
the results to impact industry by considering the realism of the
scenario used for evaluation. The approach proposed in Ivarsson
and Gorschek [30] awards points for achieving certain criteria that
define rigour and relevance, with a maximum of three points for
rigour and four points for relevance. A summary of the model is
provided in Table 10.

The classification of papers from Phase 2 are summarised in
Fig. 4, and detailed in Table 11 using the acronyms in Table 10.

These results are positive, showing significantly higher levels of
rigour and relevance than are seen in Ivarsson and Gorschek [30].
However, there is still a large range in these results.

Of the areas assessed using this method, one stood out as falling
short in comparison to the other aspects. Validity was usually not
discussed in the publications.

While it was positive to find higher levels of research rigour and
relevance than was expected by the authors, the publications are
by no means perfect. An attempt was made to classify the research
against the model of context in industrial software engineering re-
search proposed by Petersen and Wohlin [46]. Such a classification
would provide much detail into the contexts that have been stud-
ied and the areas where further work is required. Unfortunately so
much information was not published in the papers that no mean-
ingful result could be obtained on the contexts that have been
studied and those that have not.

As previously mentioned, discussions of research validity were
commonly missing or lacked sufficient detail.
6. Conclusion

This paper seeks to answer two research questions with respect
to software quality trade-offs.

The first research question, RQ1, aims to identify the state of the
art with respect to software quality trade-off literature. A system-
atic map of 168 publications has been conducted to answer this
question. The map covered the key research venues, key research-
ers, research approaches applied, development artefacts on which
trade-offs are applied and the trade-off approaches studied.

A clear majority of the research is focused in the early phases of
the development cycle—with 90% of the publications address pro-
cess, requirements and architecture. Architecture stands out as the
artefact on which most software quality trade-off research is
undertaken, with 49% of the identified publications focusing on
this artefact.

The results show the software quality trade-off research area to
still be maturing, with 61% of the research providing non-empiri-
cally assessed solution proposals. Only 28% of the publications pro-
vide empirical evidence. Further, a very diverse range of
approaches for conducting software quality trade-offs are still
being proposed and explored. AHP is the most research approach,
employed in 13% of the publications. Model-based approaches
are equally applied, but vary greatly in their implementation.

The quality trade-off approaches cover a wide solution space.
Researchers are drawing from computer science, software engi-
neering, economics, mathematics and statistics to find suitable ap-
proaches. However, most research on an approach seems to stop
once the solution has been proposed. In order to be able to confirm
the viability and compare these approaches, empirical research
must be conducted. Without empirical research, practitioners
and researchers alike are unable to determine which approach is
the most suitable for a given context.

The second research question, RQ2, seeks to provide a more de-
tailed overview with respect to empirical research addressing soft-
ware quality trade-offs. Phase 1 of the research identified 48
publications within the scope of this question. After reading and
classifying the publications only 43 were found to be within scope
of Phase 2.

The aims for conducting software quality trade-offs are varied.
When looking at papers addressing the process and requirements
artefacts, most aim to help elicit priorities, which can then be
explicitly or implicitly turned into requirements. Some publica-
tions emphasised the need for a common understanding to achieve
software quality success, with one claiming that knowledge of the
priorities on quality can provide a sufficient understanding of the
quality requirements.

The results for the architecture artefact also showed a diverse
range of approaches are being used to assess the ability for a soft-
ware architecture to meet quality goals, with a number trying to
improve the architecture before the software is built.

As with Phase 1, the results of Phase 2 highlight that there is no
clear approach used for software quality trade-offs. Phase 2 empha-
sises this point with respect to the process and requirements
artefacts.

However, there are some commonalities between the various
approaches to software quality trade-offs. Many publications
emphasise the need to create a model of software quality tailored
to the context in which it is being applied, and to involve a diverse
range of perspectives in any trade-off process to help ensure all as-
pects of the product development are properly considered. Further,
AHP is the trade-off approach of choice when choosing between
software packages as part of the procurement process.

AHP is also found to be the most robust approach, being applied
or proposed for use with regard to all development artefacts.

This research found a very wide vocabulary used to describe
software quality. In using such a wide research vocabulary,
researchers make it difficult to people find relevant publications.
Going forward it would be advantageous to develop a standard
vocabulary to describe software quality to help overcome these
issues.

Further, the authors would like to recommend authors who de-
velop solution proposals to name these proposals. This allows dif-
ferent approaches to be quickly and easily identified. Without a
name for solution proposals, it can become very difficult to search
for reviews, validation and evaluation of this work.

Finally, the results highlight the need for greater empirical re-
search. While a wide range of solutions are being proposed, the
lack of empirical evidence means only limited comparisons and
evaluations can be made between the methods. Without this
understanding it not possible to determine and transfer best-prac-
tice to industrial practitioners.
Acknowledgements

This work was partly funded by Vinnova, Sony Ericsson Mobile
Communications, Ericsson, ST-Ericsson, Axis Communications and
Softhouse Consulting Baltic as part of the Industrial Excellence Cen-
ter for Embedded Applications Software Engineering (EASE).
References

[1] Sebastian Barney, Claes Wohlin, Software product quality: Ensuring a common
goal, in: Qing Wang, Ray Madachy, Dietmar Pfahl (Eds.), Proceedings of the
International Conference on Software Process (ICSP), 2009, pp. 256–267.

[2] Sebastian Barney, Claes Wohlin, Aybüke Aurum, Balancing software product
investments, in: Empirical Software Engineering and Management (ESEM),
2009, pp. 257–268.

[3] I. Bate, Systematic approaches to understanding and evaluating design trade-
offs, Journal of Systems and Software 81 (8) (2008) 1253–1271.

[4] Richard Berntsson Svensson, Thomas Olsson, Björn Regnell, Introducing
support for release planning of quality requirements: an industrial
evaluation of the QUPER model, in: Second International Workshop on
Software Product Management (IWSPM), 2008, pp. 18–26.

S. Barney et al. / Information and Software Technology 54 (2012) 651–662 661
[5] Richard Berntsson Svensson, Tony Gorschek, Björn Regnell, Quality
requirements in practice: An interview study in requirements engineering
for embedded systems, in: Proceedings of 15th International Working
Conference on Requirements Engineering: Foundation for Software Quality
(REFSQ), LNCS, vol. 5512, Amsterdam, Netherlands, June 2009, pp. 218–232.

[6] Richard Berntsson Svensson, Martin Höst, Björn Regnell, Managing quality
requirements: A systematic review, in: 36th EUROMICRO Conference on
Software Engineering and Advanced Applications (SEAA), 2010a, pp. 261–268.

[7] Richard Berntsson Svensson, Yuri Sprockel, Björn Regnell, Sjaak Brinkkemper,
Cost and benefit analysis of quality requirements in competitive software
product management: A case study on the quper model, in: Fourth
International Workshop on Software Product Management (IWSPM), 2010b,
pp. 40–48.

[8] Stefan Biffl, Aybüke Aurum, Barry Boehm, Hakan Erdogmus, Paul Grünbacher
(Eds.), Value-Based Software Engineering, Springer, Berlin Heidelberg, 2006.

[9] Barry Boehm, Apurva Jain, An initial theory of value-based software
engineering, in: Stefan Biffl, Aybüke Aurum, Barry Boehm, Hakan Erdogmus,
Paul Grünbacher (Eds.), Value-Based Software Engineering, Springer, Berlin
Heidelberg, 2006, pp. 15–37.

[10] Nelis Boucké, Danny Weyns, Kurt Schelfthout, Tom Holvoet, Applying the
ATAM to an architecture for decentralized control of a transportation system,
in: Christine Hofmeister, Ivica Crnkovic, Ralf Reussner (Eds.), Quality of
Software Architectures, Lecture Notes in Computer Science, vol. 4214,
Springer, Berlin/Heidelberg, 2006, pp. 180–198.

[11] K. Buyens, R. Scandariato, W. Joosen, Measuring the interplay of security
principles in software architectures, in: 3rd International Symposium on
Empirical Software Engineering and Measurement (ESEM), 2009, pp. 554–563.

[12] Yolande E. Chan, Why haven’t we mastered alignment? The importance of the
informal organization structure, MIS Quarterly Executive 1 (2) (2002) 97–112.

[13] Yolande E. Chan, Blaize Horner Reich, IT alignment: an annotated bibliography,
Journal of Information Technology 22 (4) (2007) 316–396.

[14] Che-Wei Chang, Cheng-Ru. Wu, Hung Lin Lin, Integrating fuzzy theory and
hierarchy concepts to evaluate software quality, Software Quality Journal 16
(2) (2008) 263–276.

[15] Lawrence Chung, Brian A. Nixon, Eric Yu, John Mylopoulos, Non-Functional
Requirements in Software Engineering, Kluwer Academic, 2000.

[16] Vittorio Cortellessa, Catia Trubiani, Leonardo Mostarda, Naranker Dulay, An
architectural framework for analyzing tradeoffs between software security
and performance, in: H Giese (Ed.), Proceedings Architecting Critical Systems,
Lecture Notes in Computer Science, vol. 6150, 2010, pp. 1–18. 1st International
Symposium on Architecting Critical Systems, Prague, Czech Republic, June 23–
25, 2010.

[17] Mahsa Razavi Davoudi, Fereidoon Shams Aliee, A new AHP-based approach
towards enterprise architecture quality attribute analysis, in: Third
International Conference on Research Challenges in Information Science
(RCIS), Fez, Morocco, 2009, pp. 333–342.

[18] C. Del Rosso, Software performance tuning of software product family
architectures: Two case studies in the real-time embedded systems domain,
Journal of Systems and Software 81 (1) (2008) 1–19.

[19] J. Dı́az-Pace, Marcelo Campo, Using planning techniques to assist quality-
driven architectural design exploration, in: Sven Overhage, Clemens
Szyperski, Ralf Reussner, Judith Stafford (Eds.), Software Architectures,
Components, and Applications, Lecture Notes in Computer Science, vol.
4880, Springer, Berlin/Heidelberg, 2007, pp. 33–52.

[20] Tore Dybå, Torgeir Dingsøyr, Empirical studies of agile software development:
a systematic review, Information and Software Technology 50 (9–10) (2008)
833–859.

[21] Nina Fogelström, Sebastian Barney, Aybüke Aurum, Anders Hederstierna,
When product managers gamble with requirements: attitudes to value and
risk, Requirements Engineering: Foundation for Software Quality (2009) 1–
15.

[22] David A. Garvin, What does ‘‘product quality’’ really mean?, Sloan
Management Review 26 (1) (1984) 25–43

[23] Anna Grimán, Maria Pérez, L. Mendoza, F. Losavio, Feature analysis for
architectural evaluation methods, Journal of Systems and Software 79 (6)
(2006) 871–888.

[24] Georg Herzwurm, Sixten Schockert, Wolfram Pietsch, QFD for customer-
focused requirements engineering, in: Proceedings of the 11th IEEE
International Requirements Engineering Conference, 2003, pp. 330–338.

[25] Ma Hongwei, Zhao Xiumei, An efficiency and fairness based packet marking
algorithm, in: 10th ACIS International Conference on Software Engineering,
Artificial Intelligences, Networking and Parallel/Distributed Computing
(SNPD), 2009, pp. 407–410.

[26] Robert W. Hoyer, Brooke B.Y. Hoyer, What is quality?, Quality Progress 34 (7)
(2001) 53–62

[27] Gang Huang, Li Zhou, Xuan-Zhe Liu, Hong Mei, Shing-Chi Cheung, Performance
aware service pool in dependable service oriented architecture, Journal
Computer Science Technology 21 (4) (2006) 565–573.

[28] Gang Huang, Xuanzhe Liu, Hong Mei, SOAR: Towards dependable service-
oriented architecture via reflective middleware, International Journal of
Simulation and Process Modelling 3 (1–2) (2007) 55–65.

[29] ISO9126, Software engineering – product quality – part 1: Quality model,
International Standards Organization, 2001.

[30] Martin Ivarsson, Tony Gorschek, A method for evaluating rigor and industrial
relevance of technology evaluations, Empirical Software Engineering (2010)
1–31.
[31] Enrico Johansson, Anders Wesslén, Lars Bratthall, Martin Höst, The importance
of quality requirements in software platform development-a survey, in:
Proceedings of the 34th Annual Hawaii International Conference on System
Sciences (HICSS), 2001.

[32] Barbara Kitchenham, Guidelines for performing systematic literature reviews
in software engineering, Technical Report EBSE200701, Keele University and
Durham University, 2007.

[33] Barbara Kitchenham, Shari Lawrence Pfleeger, Software quality: The elusive
target, IEEE Software 13 (1) (1996) 12–21.

[34] Rogerio T.O. Lacerda, Leonardo Ensslin, Sandra R. Ensslin, A study case about a
software project management success metrics, in: 33rd Annual IEEE Software
Engineering Workshop (SEW), 2009, pp. 45–54.

[35] Niklas Lavesson, Paul Davidsson, Quantifying the impact of learning algorithm
parameter tuning, in: Proceedings of the 21st National Conference on Artificial
Intelligence, vol. 1, 2006, pp. 395–400.

[36] Giovana Linhares, Marcos Borges, Pedro Antunes, Negotiation-collaboration in
formal technical reviews, in: Luı́s Carriço, Nelson Baloian, Benjamim Fonseca
(Eds.), Groupware: Design, Implementation, and Use, Lecture Notes in
Computer Science, vol. 5784, Springer, Berlin/Heidelberg, 2009, pp. 344–356.

[37] Xiaojing Liu, Jihong Pang, A fuzzy synthetic evaluation method for software
quality, in: 2nd International Conference on e-Business and Information
System Security (EBISS), May 2010, pp. 1–4.

[38] Yuan-sheng Luo, Yong Qi, Lin-feng Shen, Di Hou, C. Sapa, Ying Chen, An
improved heuristic for QoS-aware service composition framework, in: 10th
IEEE International Conference on High Performance Computing and
Communications (HPCC), 2008, pp. 360–367.

[39] F. Mahananto, R.P. Wibowo, Evaluation on organic web based software
architecture of healthcare information system, in: 40th International
Conference on Computers and Industrial Engineering (CIE), 2010, pp. 1–6.

[40] Anne Martens, Heiko Koziolek, Steffen Becker, Ralf Reussner, Automatically
improve software architecture models for performance, reliability, and cost
using evolutionary algorithms, in: Proceedings of the First Joint WOSP/SIPEW
International Conference on Performance Engineering, WOSP/SIPEW ’10, 2010,
p. 105.

[41] Nancy R. Mead, Ted Stehney, Security quality requirements engineering
(SQUARE) methodology, ACM SIGSOFT Software Engineering Notes 30 (4)
(2005) 1.

[42] S. Misailovic, S. Sidiroglou, H. Hoffmann, M. Rinard, Quality of service profiling,
in: Proceedings – International Conference on Software Engineering, vol. 1,
2010.

[43] Marcio F.S. Oliveira, Ricardo Miotto Redin, Luigi Carro, Luı́s da Cunha Lamb,
Flávio Rech Wagner, Software quality metrics and their impact on embedded
software, in: 5th International Workshop on Model-based Methodologies for
Pervasive and Embedded Software (MOMPES), 2008, pp. 68–77.

[44] Semih Onut, Tugba Efendigil, A theorical model design for erp software
selection process under the constraints of cost and quality: a fuzzy approach,
Journal of Intelligent and Fuzzy Systems 21 (6) (2010).

[45] Vikram Patankar, Rattikorn Hewett, Automated negotiations in web service
procurement, in: Third International Conference on Internet and Web
Applications and Services (ICIW), 2008, pp. 620–625.

[46] Kai Petersen, Claes Wohlin, Context in industrial software engineering
research, in: Proceedings of the 2009 3rd International Symposium on
Empirical Software Engineering and Measurement, ESEM ’09, 2009, pp. 401–
404.

[47] Kai Petersen, Robert Feldt, Shahid Mujtaba, Michael Mattsson, Systematic
mapping studies in software engineering, in: 12th International Conference
on Evaluation and Assessment in Software Engineering (EASE), 2008, pp.
71–80.

[48] João Ramires, Pedro Antunes, Ana Respı́cio, Software requirements negotiation
using the software quality function deployment, in: Hugo Fuks, Stephan
Lukosch, Ana Carolina Salgado (Eds.), Groupware: Design, Implementation,
and Use, Lecture Notes in Computer Science, vol. 3706, Springer, Berlin/
Heidelberg, 2005, pp. 308–324.

[49] A.J. Ramirez, D.B. Knoester, B.H.C. Cheng, P.K. McKinley, Plato: a genetic
algorithm approach to run-time reconfiguration in autonomic computing
systems, Cluster Computing (2010).

[50] Andres J. Ramirez, Betty H.C. Cheng, Philip K. McKinley, Benjamin E.
Beckmann, Automatically generating adaptive logic to balance non-
functional tradeoffs during reconfiguration, in: ICAC, 2010b.

[51] Björn Regnell, Martin Höst, Richard Berntsson Svensson, A quality
performance model for cost-benefit analysis of non-functional requirements
applied to the mobile handset domain, in: Pete Sawyer, Barbara Paech, Patrick
Heymans (Eds.), Requirements Engineering: Foundation for Software Quality,
Lecture Notes in Computer Science, vol. 4542, Springer, Berlin/Heidelberg,
2007, pp. 277–291.

[52] Björn Regnell, Richard Berntsson Svensson, Thomas Olsson, Supporting
roadmapping of quality requirements, IEEE Software 25 (2) (2008) 42–47.

[53] Mehwish Riaz, Muhammad Sulayman, Norsaremah Salleh, Emilia Mendes,
Experiences conducting systematic reviews from novices’ perspective, in: 14th
International Conference on Evaluation and Assessment in Software
Engineering (EASE), April 2010.

[54] Mbusi Sibisi, Cornelis Cristo Van Waveren, A process framework for
customising software quality models, in: IEEE AFRICON Conference, 2007.

[55] A. Sil, O. Bandyopadhyay, N. Chaki, Data diverse fault tolerant architecture for
component based systems, in: World Congress on Nature Biologically Inspired
Computing (NaBIC), 2009, pp. 942–946.

662 S. Barney et al. / Information and Software Technology 54 (2012) 651–662
[56] M. Svahnberg, C. Wohlin, An investigation of a method for identifying a
software architecture candidate with respect to quality attributes, Empirical
Software Engineering 10 (2) (2005) 149–181.

[57] Mikael Svahnberg, Claes Wohlin, Lars Lundberg, Michael Mattsson, A quality-
driven decision-support method for identifying software architecture
candidates, International Journal of Software Engineering and Knowledge
Engineering 13 (5) (2003) 547–573.

[58] S. Tosun, N. Mansouri, E. Arvas, M. Kandemir, Y. Xie, W.-L. Hung, Reliability-
centric hardware/software co-design, in: Sixth International Symposium on
Quality of Electronic Design (ISQED), 2005, pp. 375–380.

[59] Jos Trienekens, Rob Kusters, Dennis Brussel, Quality specification and
metrication, results from a case-study in a mission-critical software domain,
Software Quality Journal 18 (2010) 469–490.

[60] Jari Vanhanen, Mika V. Mäntylä, Juha Itkonen, Lightweight elicitation and
analysis of software product quality goals: A multiple industrial case study, in:
Third International Workshop on Software Product Management (IWSPM),
2009, pp. 42–52.
[61] Roel Wieringa, Neil Maiden, Nancy Mead, Colette Rolland, Requirements
engineering paper classification and evaluation criteria: A proposal and a
discussion, Requirements Engineering 11 (2006) 102–107.

[62] Jamaiah Haji Yahaya, Aziz Deraman, Measuring unmeasurable attributes of
software quality using pragmatic quality factor, in: 3rd IEEE International
Conference on Computer Science and Information Technology (ICCSIT), vol. 1,
2010, pp. 197–202.

[63] Gabriel L. Zenarosa, Soumya Simanta, Experiences in engineering active
replication into a traditional three-tiered client-server system, in:
Proceedings of the 2008 RISE/EFTS Joint International Workshop on Software
Engineering for Resilient Systems, SERENE ’08, 2008, pp. 55–60.

[64] Qian Zhang, Jian Wu, Hong Zhu, Tool support to model-based quality analysis
of software architecture, in: 30th Annual International Computer Software and
Applications Conference (COMPSAC), vol. 1, 2006, pp. 121–128.

	Software quality trade-offs: A systematic map
	1 Introduction
	2 Background
	2.1 Summary of previous reviews
	2.2 Research questions

	3 Method
	3.1 Research process
	3.2 Databases, keywords and search strings
	3.3 Inclusion and exclusion criteria
	3.4 Data extraction for Phase 1
	3.5 Data extraction for Phase 2
	3.6 Validity threats

	4 Phase 1: Results and discussion of all publications
	4.1 Key publication venues
	4.2 Key researchers
	4.3 Research approach and focal development artefacts
	4.4 Quality aspects studied
	4.5 Trade-off approaches
	4.6 Systematic mapping discussion

	5 Phase 2: Results and discussion for empirical publications
	5.1 Trade-off approaches
	5.2 Aim of publications
	5.3 Academic rigour and industrial relevance

	6 Conclusion
	Acknowledgements
	References

