King Saud University
Academic Year (G) 2016-2017
College of Sciences
Mathematics Department

Solution of Homework 2 (Cumulative distributions function, Expectation and Variance)

Problem 1.

1. The GPA (grade point average) random variable X assigns to the letter grades A, B, C, D and E the numerical values $4,3,2,1$ and 0 . Find the expected value of X for a student selected at random from a class in which there were 15 A grades, 33 B grades, 51 C grades, 6 D grades, and 3 E grades. (This expected value can be thought of as the class average GPA for the course.). Solution: The total number of students is $15+33+51+6+3=108$,

$$
E[X]=4 \times \frac{15}{108}+3 \times \frac{33}{108}+2 \times \frac{51}{108}+1 \times \frac{6}{108}+0 \times \frac{3}{108}=\frac{267}{108} \simeq 2.4722 .
$$

2. A construction company whose workers are used on high-risk projects insures its workers against injury or death on the job. One unit of insurance for an employee pays $\$ 1000$ for an injury and $\$ 10000$ for death. Studies have shown that in a year 7.3% of the workers suffer an injury and 0.41% are killed.
What is the expected unit claim amount (pure premium) for this insurance?
Solution: The expected unit claim amount (pure premium) is

$$
1000 \times 0.073+10000 \times 0.0041=\$ 114
$$

3. If the company has 10000 employees and exactly 7.3%, are injured and exactly 0.41% are killed. What is the average cost per unit of the insurance claims?
Solution: We have

$$
10000 \times 0.073=730 \quad \text { injured }
$$

and

$$
10000 \times 0.0041=41 \text { killed }
$$

The average cost per unit of the insurance claims is

$$
\frac{730 \times \$ 114+41 \times \$ 114}{730+41}=\$ 114
$$

4. Suppose that in the above question the administrative costs are $\$ 50$ per person insured. The company purchases 10 units of insurance for each worker. Let X be the total of expected claim amount and administrative costs for each worker. Find the expectation of X.
Solution: $E[X]=114 \times 10+50=1190$.
5. For the insurance policy that pays $\$ 1000$ for an injury and $\$ 10000$ for death, what is the standard deviation for the claim amount on 5 units of insurance? (Note: Some employees receive $\$ 0$ of claim payment. This value of the random variable must be included in your calculation).
Solution: The standard deviation for the claim amount on 5 units of insurance is

$$
\operatorname{sd}(\text { claim })=\sqrt{5 \times \frac{730}{771} \times \frac{41}{771}}=\frac{5}{771} \sqrt{146 \times 41}=0.5017
$$

Problem 2.

An urn contains N bulls numbered from 1 to N. We pick a randomly a bull (all the bulls are equally likely to be extracted) and define the r.v. X by the number of the extracted bull.

1. Calculate the expectation and the variance of X.

Solution: Remark fist that X is a uniform discrete random variable on $\{1,2,3, \ldots, N\}$.

$$
E[X]=\sum_{k=1}^{N} k P(X=k)=\frac{1}{N} \sum_{k=1}^{N} k=\frac{(1+N) N}{2 N}=\frac{1+N}{2}
$$

and

$$
E\left[X^{2}\right]=\sum_{k=1}^{N} k^{2} P(X=k)=\frac{1}{N} \sum_{k=1}^{N} k^{2}=\frac{N(2 N+1)(N+1)}{N 6} .
$$

Hence

$$
\operatorname{Var}(X)=E\left[X^{2}\right]-(E[X])^{2}=\frac{(2 N+1)(N+1)}{6}-\frac{(1+N)^{2}}{4}=\frac{N^{2}-1}{12} .
$$

2. We toss n times a fair coin and define the r.v. X to be the number of tails got after n tosses and define the r.v. $Y=\frac{a^{X}}{2^{n}},\left(a \in \mathbb{R}_{+}^{*}\right)$. Calculate $E[Y]$.
Solution: We know that X ha a binomiale distributuion $\mathcal{B}\left(n, \frac{1}{2}\right)$ then

$$
E[Y]=E\left[\frac{a^{X}}{2^{n}}\right]=\frac{1}{2^{n}} E\left[a^{X}\right]=\frac{1}{2^{n}} \sum_{k=0}^{n} a^{k} \frac{1}{2^{n}}\binom{n}{k}=\frac{1}{2^{2 n}} \sum_{k=0}^{n} a^{k}\binom{n}{k}==\frac{1}{2^{2 n}}(a+1)^{n} .
$$

Problem 3.

1. Let X be a Poison r.v. with parameter λ and define the r.v. Y by

$$
Y= \begin{cases}\frac{X}{2} & \text { if } X \text { is even } \\ 0 & \text { if } X \text { is odd }\end{cases}
$$

(a) Find the distribution Y, and calculate its expectation and its variance.

Solution: $S_{Y}=\mathbb{N}$, for $n \in \mathbb{N}$, the p.m.f. is defined by $f(n)=P(Y=n)$. So for any $n \geq 1$, we have

$$
f(n)=P(Y=n)=P(X=2 n)=e^{-\lambda} \frac{\lambda^{2 n}}{(2 n)!}
$$

Details were done in the class room (see notes in the Bb: https://lms.ksu.edu.sa/).
2. Let X and Y be two independent r.v. taking values in \mathbb{N} : such that X follows the Bernoulli distribution with parameter p and Y follows a Poisson distribution of parameter λ. Now define the r.v. Z by $Z=X Y$.
(a) Calculate the distribution of Z.

Solution: Since X and Y are r.v. then Z is also a r.v. defined on a probability space
(Ω, \mathcal{F}, P) Moreover $S_{Z}=\mathbb{N}$, for $n \in \mathbb{N}$, the p.m.f. is defined by $f(n)=P(Z=n)$. So for any $n \geq 1$, we have

$$
\begin{aligned}
f(n) & =P(Z=n)=P(\{Z=n\} \cap(\{X=0\} \cup\{X=1\})) \text { since }\{X=0\} \cup\{X=1\}=\Omega \\
& =P((\{Z=n\} \cap\{X=0\}) \cup(\{Z=n\} \cap\{X=1\})) \\
& =P((\{X Y=n\} \cap\{X=0\}) \cup(\{X Y=n\} \cap\{X=1\})) \\
& =P(\{X Y=n\} \cap\{X=1\}) \text { since }\{X Y=n\} \cap\{X=0\}=\emptyset \text { for all } n \geq 0 \\
& =P(\{Y=n\} \cap\{X=1\})=P(\{Y=n\}) P(\{X=1\}) \text { since } X \amalg Y \\
& =p e^{-\lambda} \frac{\lambda^{n}}{n!} .
\end{aligned}
$$

and

$$
\begin{aligned}
f(0) & =1-\sum_{n=1}^{\infty} p e^{-\lambda} \frac{\lambda^{n}}{n!}=p e^{-\lambda} \sum_{n=1}^{\infty} \frac{\lambda^{n}}{n!}=1+p e^{-\lambda}-p e^{-\lambda} e^{\lambda} . \\
& =1-p+p e^{-\lambda} .
\end{aligned}
$$

where we have used the fact that $\sum_{n=1}^{\infty} \frac{x^{n}}{n!}=e^{x}-1$. Hence the p.m.f. of Z is given by $(n, f(n))_{n \geq 0}$ where

$$
f(n)=\left\{\begin{array}{c}
1-p+p e^{-\lambda} \text { for } n=0 \\
p e^{-\lambda} \frac{\lambda^{n}}{n!} \text { for } n \geq 1
\end{array}\right.
$$

(b) Find the moment generating function (MGF:) of Z.

Solution: the MGF: of Z is given by

$$
\begin{aligned}
M_{Z}(t) & =E\left[e^{t Z}\right]=\sum_{n=0}^{\infty} e^{t n} f(n)=e^{t \times 0} f(0)+\sum_{n=1}^{\infty} e^{t n} f(n) \\
& =1-p+p e^{-\lambda}+\sum_{n=1}^{\infty} e^{t n} p e^{-\lambda} \frac{\lambda^{n}}{n!} \\
& =1-p+p e^{-\lambda}+p e^{-\lambda} \sum_{n=1}^{\infty} \frac{\left(\lambda e^{t}\right)^{n}}{n!} \\
& =1-p+p e^{-\lambda}\left(1+\sum_{n=1}^{\infty} \frac{\left(\lambda e^{t}\right)^{n}}{n!}\right) \\
& =1-p+p e^{-\lambda} e^{\lambda e^{t}} \text { for all } t \in \mathbb{R}
\end{aligned}
$$

(c) Deduce $E[Z]$ and $\operatorname{Var}(Z)$.

Solution: We know that $E[Z]=M_{Z}^{\prime}(0)$ and $\operatorname{Var}(Z)=M_{Z}^{\prime \prime}(0)-\left(M_{Z}^{\prime}(0)\right)^{2}$. But we have

$$
M_{Z}^{\prime}(t)=p e^{-\lambda} \lambda e^{t} e^{\lambda e^{t}} \text { and } M_{Z}^{\prime \prime}(t)=p e^{-\lambda} \lambda e^{t} e^{\lambda e^{t}}+p e^{-\lambda}\left(\lambda e^{t}\right)^{2} e^{\lambda e^{t}}
$$

hence for $t=0$, we get

$$
E[Z]=M_{Z}^{\prime}(t)=p e^{-\lambda} \lambda e^{\lambda}=p \lambda \text { and } M_{Z}^{\prime \prime}(0)=p \lambda+p \lambda^{2}
$$

and

$$
\operatorname{Var}(Z)=p \lambda+p \lambda^{2}-p^{2} \lambda^{2}=p \lambda+p(1-p) \lambda^{2} .
$$

(d) Calculate $P(X=1 \mid Z=0)$.

Solution: By definition of the conditional probability we have

$$
\begin{aligned}
P(X=1 \mid Z=0) & =\frac{P(X=1 ; Z=0)}{P(Z=0)}=\frac{P(X=1 ; X Y=0)}{1-p+p e^{-\lambda}} \\
& =\frac{P(X=1 ; Y=0)}{1-p+p e^{-\lambda}}=\frac{P(X=1) P(Y=0)}{1-p+p e^{-\lambda}} \text { since } X \amalg Y
\end{aligned}
$$

then

$$
P(X=1 \mid Z=0)=\frac{p e^{-\lambda}}{1-p+p e^{-\lambda}}
$$

Problem 4.

1. Determine whether the random variable is discrete or continuous.
(a) X is a randomly selected number in the interval $[0,1]$. Answer: X is a continuous r.v. because it my take in value of the interval $[0,1]$.
(b) Y is the number of heart beats per minute. Answer: X is a discrete because it can take only finite integer values.
(c) Z is the number of calls at a switchboard in a day. Answer: X is a discrete because it can take only finite integer values.
(d) $U:] 0,1[\longmapsto \mathbb{R}$ defined by $U(s)=2 s-1$. Answer: X is a continuous r.v. because it my take in value of the real line.
2. Let X be a random variable with values in $\{1,2, \ldots, n\}$ such that for each $1 \leq k \leq n$

$$
P[X=k]=\frac{2 k}{n(n+1)}
$$

Find $E[X]$.
Answer: By definition

$$
E[X]=\sum_{k=1}^{n} k P[X=k]=\sum_{k=1}^{n} k \frac{2 k}{n(n+1)}=\frac{2}{n(n+1)} \sum_{k=1}^{n} k^{2} .
$$

We know that

$$
\sum_{k=1}^{n} k^{2}=\frac{n(n+1)(2 n+1)}{6}
$$

therefore

$$
E[X]=\frac{2}{n(n+1)} \times \frac{n(n+1)(2 n+1)}{6}=\frac{2 n+1}{3} .
$$

3. Let X be a discrete random variable taking its values in the set \mathbb{N} : Suppose that

$$
P(X=0)=P(X=1)
$$

and for each $k \geq 1$

$$
P(X=k+1)=\frac{1}{k} P(X=k)
$$

(a) Find $P(X=0)$.

Answer: Remark first that

$$
\begin{aligned}
P(X=k+1) & =\frac{1}{k} P(X=k)=\frac{1}{k(k-1)} P(X=k-1) \\
& =\frac{1}{k(k-1)(k-2) \cdots \times 2 \times 1} P(X=1) \\
& =\frac{1}{k!} P(X=1)=\frac{1}{k!} P(X=0) .
\end{aligned}
$$

Moreover we have

$$
\begin{aligned}
& P(X=0)+P(X=1)+\sum_{k=1}^{\infty} P(X=k+1)=1 \\
\Longleftrightarrow & P(X=0)+P(X=0)+\sum_{k=1}^{\infty} \frac{P(X=0)}{k!}=1 \\
\Longleftrightarrow & P(X=0)\left(1+\sum_{k=1}^{\infty} \frac{1}{k!}\right)=P(X=0)\left(\sum_{k=0}^{\infty} \frac{1}{k!}\right)=P(X=0) e=1
\end{aligned}
$$

where we have used $\sum_{k=0}^{\infty} \frac{1}{k!}=e$ therefore $P(X=0)=e^{-1}$. This means that X follows a Poisson distribution with parameter 1.
(b) Find the expectation and variance of X.

Solution: X has a Poisson distribution with parameter 1, hence $E[X]=\operatorname{Var}(X)=1$
4. The amount of a single loss X for an insurance policy is exponentially distributed with density function

$$
f(x)=\left\{\begin{array}{c}
\frac{2}{10^{3}} \exp \left(-\frac{2}{10^{3}} x\right) \text { if } x>0 \\
0 \text { otherwise }
\end{array}\right.
$$

(a) Find the expected value of a single loss

Solution: The expected value of a single loss $E[X]$ hence

$$
\begin{aligned}
E[X] & =\int x f(x) d x=\int_{0}^{\infty} \frac{2 x}{10^{3}} \exp \left(-\frac{2}{10^{3}} x\right) d x \\
& =\left[-x \exp \left(-\frac{2}{10^{3}} x\right)\right]_{0}^{\infty}+\int_{0}^{\infty} \exp \left(-\frac{2}{10^{3}} x\right) d x=\frac{10^{3}}{2}
\end{aligned}
$$

(b) Find the standard deviation of a single loss.

Solution: The standard deviation of a single loss X is given by $s d(X)=\sqrt{\operatorname{Var}(X)}$. First let us calculate $E\left[X^{2}\right]$

$$
\begin{aligned}
E\left[X^{2}\right] & =\int x^{2} f(x) d x=\int_{0}^{\infty} \frac{2 x^{2}}{10^{3}} \exp \left(-\frac{2}{10^{3}} x\right) d x \\
& =\left[-x^{2} \exp \left(-\frac{2}{10^{3}} x\right)\right]_{0}^{\infty}+\int_{0}^{\infty} 2 x \exp \left(-\frac{2}{10^{3}} x\right) d x \\
& =2 \frac{10^{3}}{2} \int_{0}^{\infty} \frac{2 x}{10^{3}} \exp \left(-\frac{2}{10^{3}} x\right) d x=2 \frac{10^{3}}{2} E[X]=2\left(\frac{10^{3}}{2}\right)^{2}
\end{aligned}
$$

Therefore

$$
\operatorname{Var}(X)=2\left(\frac{10^{3}}{2}\right)^{2}-\left(\frac{10^{3}}{2}\right)^{2}=\left(\frac{10^{3}}{2}\right)^{2}
$$

consequently $\operatorname{sd}(X)=\sigma_{X}=\frac{10^{3}}{2}=500$.
5. (Insurance with a deductible) Suppose the insurance has a deductible of $\$ 100$ for each loss. Find the expected value of a single claim.
Solution: In this case the expectation of a single loss is given by $E[\max (X-100,0)]$. Remark first that $\max (x-100,0)=x-100$ if $x>100$ and $\max (x-100,0)=0$ if $x \leq 100$, hence

$$
\begin{aligned}
E[\max (X-100,0)] & =\int \max (x-100,0) f(x) d x=\int_{100}^{\infty}(x-100) \frac{2}{10^{3}} \exp \left(-\frac{2}{10^{3}} x\right) d x \\
& =\int_{100}^{\infty} \frac{2 x}{10^{3}} \exp \left(-\frac{2}{10^{3}} x\right) d x-100 \int_{100}^{\infty} \frac{2}{10^{3}} \exp \left(-\frac{2}{10^{3}} x\right) d x
\end{aligned}
$$

Now we have

$$
\begin{aligned}
\int_{100}^{\infty} \frac{2 x}{10^{3}} \exp \left(-\frac{2}{10^{3}} x\right) d x & =\left[-x \exp \left(-\frac{2}{10^{3}} x\right)\right]_{100}^{\infty}+\int_{100}^{\infty} \exp \left(-\frac{2}{10^{3}} x\right) d x \\
& =100 e^{-\frac{1}{5}}+\left[-\frac{10^{3}}{2} \exp \left(-\frac{2}{10^{3}} x\right)\right]_{100}^{\infty} \\
& =100 e^{-\frac{1}{5}}+500 e^{-\frac{1}{5}}=600 e^{-\frac{1}{5}}
\end{aligned}
$$

and

$$
100 \int_{100}^{\infty} \frac{2}{10^{3}} \exp \left(-\frac{2}{10^{3}} x\right) d x=\frac{2}{10^{2}}\left[-\frac{10^{3}}{2} \exp \left(-\frac{2}{10^{3}} x\right)\right]_{100}^{\infty}=100 e^{-\frac{1}{5}}
$$

Therefore

$$
E[\max (X-100,0)]=600 e^{-\frac{1}{5}}-100 e^{-\frac{1}{5}}=500 e^{-\frac{1}{5}}
$$

Problem 5.

1. Let $f(x): a\left(e^{-2 x}-e^{-3 x}\right)$, for $x>0$, and $f(x)=0$ elsewhere.
(a) Find a so that f is a probability density function of a r.v. X.

Solution: We have $\int_{0}^{\infty} a\left(e^{-2 x}-e^{-3 x}\right) d x=\frac{a}{6}=1$ then $a=6$.
(b) Calculate $P(X<1)$?

Solution: We have $P(X<1)=\int_{0}^{1} 6\left(e^{-2 x}-e^{-3 x}\right) d x=2 e^{-3}-3 e^{-2}+1 \simeq 0.6936$
2. Let X be a random variable with probability density function

$$
f(x)=\left\{\begin{array}{lc}
25 x & \text { if } 0<x \leq \frac{2}{10} \\
1.5225(1-x) & \text { if } \frac{2}{10}<x<1 \\
0 & \text { otherwise }
\end{array}\right.
$$

(a) Find the c.d.f. of X

Solution: The c.d.f. is given by

$$
\begin{aligned}
& F_{X}(x)=\left\{\begin{array}{l}
0 \\
\begin{array}{l}
\int_{0}^{x} 25 y d y \\
\text { if }^{2} 0<x \leq \frac{2}{10} \\
\int_{0}^{\frac{2}{10}} 25 y d y+\int_{\frac{2}{10}}^{x} 1.5225(1-y) d y \text { if } \\
0
\end{array} \frac{2}{10}<x<1
\end{array}\right. \\
& F_{X}(x)= \begin{cases}0 & \text { otherwise } \\
\frac{25}{2} x^{2} & \text { if } x \leq 0 \\
\frac{1}{2}+\frac{1.5225}{2}\left(\left(1-\frac{2}{10}\right)^{2}-(1-x)^{2}\right)=-\frac{2}{800} \\
1 & \text { if } x \geq 1\end{cases}
\end{aligned}
$$

(b) Deduce the value of $P\left(\frac{1}{10}<X<\frac{6}{10}\right)$.

Solution: We have $P\left(\frac{1}{10}<X<\frac{6}{10}\right)=F_{X}\left(\frac{6}{10}\right)-F_{X}\left(\frac{1}{10}\right)$ and since $\left.\frac{6}{10} \in\right] \frac{2}{10} ; 1[$, we have

$$
F_{X}\left(\frac{6}{10}\right)=-\frac{609}{800}\left(\frac{6}{10}\right)^{2}+\frac{609}{400} \frac{6}{10}+\frac{4519}{20000}=\frac{4327}{5000}
$$

and $\left.\left.\frac{1}{10} \in\right] 0 ; \frac{2}{10}\right]$, Then

$$
P\left(\frac{1}{10}<X<\frac{6}{10}\right)=\frac{4327}{5000}-\frac{1}{8}=\frac{1851}{2500} \simeq 0.7404
$$

since $F_{X}\left(\frac{1}{10}\right)=\frac{25}{2}\left(\frac{1}{10}\right)^{2}=\frac{1}{8}$.

Problem 6.

1. Let f be a function defined by:

$$
f(x)= \begin{cases}0 & \text { if } \quad x<0 \\ 1 & \text { if } 0 \leq x<1 \\ 0 & \text { if } x \geq 1\end{cases}
$$

(a) show that f is a probability density function of a r.v. X.

Solution: f is a p.d.f. because $f(x) \geq 0$ foe all $x \in \mathbb{R}$, and $\int_{-\infty}^{\infty} f(x) d x=\int_{0}^{1} 1 d x=1$.
(b) Find the c.d.f. of X.

Solution: The c.d.f. is given by

$$
F_{X}(x)=\int_{-\infty}^{x} f(t) d t=\left\{\begin{array}{cll}
0 & \text { if } & x \leq 0 \\
\int_{0}^{x} 1 d t & \text { if } & 0<x<1 \\
1 & \text { if } & x \geq 1
\end{array}\right.
$$

(c) Calculate $E[X]$ and its variance.

Solution: We have

$$
E[X]=\int_{-\infty}^{+\infty} t f(t) d t=\int_{0}^{1} t d t=\frac{1}{2}
$$

and

$$
E\left[X^{2}\right]=\int_{-\infty}^{+\infty} t^{2} f(t) d t=\int_{0}^{1} t^{2} d t=\frac{1}{3}
$$

Then

$$
\operatorname{Var}(X)=E\left[X^{2}\right]-(E[X])^{2}=\frac{1}{3}-\left(\frac{1}{2}\right)^{2}=\frac{1}{12}
$$

2. Let X be r.v. having a p.d.f. f given by:

$$
f(x)=\left\{\begin{array}{cll}
0 & \text { if } & x<0 \\
a(x+1) & \text { if } & 0 \leq x<2 \\
a(x-1) & \text { if } & 2 \leq x<4 \\
0 & \text { if } & x \geq 4
\end{array}\right.
$$

(a) Find the value of the constant a.

Solution:

$$
\int_{0}^{4} f(x) d x=1 \Longleftrightarrow \int_{0}^{2} a(x+1) d x+\int_{2}^{4} a(x-1) d x=1 \Longleftrightarrow 8 a=1
$$

hence $a=\frac{1}{8}$
(b) Give the c.d.f F_{X} of X

Solution: The c.d.f. of X is given by

$$
F_{X}(x)=\int_{-\infty}^{x} f(t) d t=\left\{\begin{array}{cll}
0 & \text { if } & x<0 \\
\int_{0}^{x} \frac{1}{8}(t+1) d t & \text { if } \quad 0 \leq x<2 \\
\int_{0}^{2} \frac{1}{8}(t+1) d t+\int_{2}^{x} \frac{1}{8}(t-1) d t & \text { if } \quad 2 \leq x<4 \\
1 & \text { if } \quad x \geq 4
\end{array}\right.
$$

but we have

$$
\int_{0}^{x} \frac{1}{8}(t+1) d t=\frac{1}{16} x(x+2)
$$

and

$$
\int_{0}^{2} \frac{1}{8}(t+1) d t+\int_{2}^{x} \frac{1}{8}(t-1) d t=\frac{1}{16} x(x-2)+\frac{1}{2}
$$

Therefore

$$
F_{X}(x)=\left\{\begin{array}{cll}
0 & \text { if } & x<0 \\
\frac{1}{16} x(x+2) & \text { if } & 0 \leq x<2 \\
\frac{1}{16} x(x-2)+\frac{1}{2} & \text { if } & 2 \leq x<4 \\
1 & \text { if } & x \geq 4
\end{array}\right.
$$

(c) Deduce the value $P[1 \leq X<3]$.

Solution: We have

$$
\begin{aligned}
P[1 \leq X<3] & =F_{X}(3)-F_{X}(1) \\
& =\frac{1}{16} 3(3-2)+\frac{1}{2}-\frac{1}{16} 1(1+2)=\frac{1}{2}
\end{aligned}
$$

(d) Calculate $E[X]$ and $\operatorname{Var}[X]$

Solution: We have

$$
E[X]=\int_{-\infty}^{+\infty} t f(t) d t=\int_{0}^{2} t \frac{1}{8}(t+1) d t+\int_{2}^{4} t \frac{1}{8}(t-1) d t=\frac{13}{6}
$$

and

$$
E\left[X^{2}\right]=\int_{-\infty}^{+\infty} t^{2} f(t) d t=\int_{0}^{2} t^{2} \frac{1}{8}(t+1) d t+\int_{2}^{4} t^{2} \frac{1}{8}(t-1) d t=6
$$

Then

$$
\operatorname{Var}(X)=E\left[X^{2}\right]-(E[X])^{2}=6-\left(\frac{13}{6}\right)^{2}=\frac{47}{36}
$$

3. Let X be a continuous r.v. with p.d.f. f such that

$$
f(x)=\left\{\begin{array}{clc}
c \ln x & \text { if } & 0<x<1 \\
0 & \text { if } & \text { otherwise }
\end{array}\right.
$$

(a) Find the true value of c.

Solution: $\int_{0}^{1} c \ln (x) d x=[c(x \ln (x)-x)]_{0}^{1}=-c=1$ hence $c=-1$
(b) Give the c.d.f F_{X} of X

$$
F_{X}(x)=\int_{-\infty}^{x} f(t) d t=\left\{\begin{array}{cll}
0 & \text { if } & x \leq 0 \\
\int_{0}^{x}-\ln (t) d t & \text { if } & 0<x<1 \\
1 & \text { if } & x \geq 1
\end{array}\right.
$$

Hence the c.d.f. is given by

$$
F_{X}(x)=\left\{\begin{array}{ccl}
0 & \text { if } & x \leq 0 \\
x-x \ln (x) & \text { if } & 0<x<1 \\
1 & \text { if } & x \geq 1
\end{array}\right.
$$

(c) Calculate $E[X]$ and $\operatorname{Var}[X]$

Solution:

$$
E[X]=\int_{0}^{1}-x \ln (x) d x=\left[\frac{1}{4} x^{2}-\frac{1}{2} x^{2} \ln x\right]_{0}^{1}=\frac{1}{4}
$$

and

$$
E\left[X^{2}\right]=\int_{0}^{1}-x^{2} \ln (x) d x=\left[\frac{1}{9} x^{3}-\frac{1}{3} x^{3} \ln x\right]_{0}^{1}=\frac{1}{9}
$$

and then

$$
\operatorname{Var}[X]=\frac{1}{9}-\frac{1}{16}=\frac{7}{144}
$$

(d) Let X be a continuous r.v. with c.d.f. F given by

$$
F(x)=\left\{\begin{array}{cll}
0 & \text { if } & x \leq x_{0} \\
1-\frac{K}{x^{2}} & \text { if } & x_{0}<x<+\infty
\end{array}\right.
$$

(e) Find the p.d.f. f of X and find the value of K.

Solution: The p.d.f. f of X is given $f(x)=F^{\prime}(x)=\frac{2 K}{x^{3}}$. To find K we solve the equation

$$
\int_{x_{0}}^{+\infty} f(x) d x=1 \Longleftrightarrow K \int_{x_{0}}^{+\infty} \frac{2}{x^{3}} d x=1 \Longleftrightarrow \frac{K}{x_{0}^{2}}=1 \Longleftrightarrow K=x_{0}^{2}
$$

Hence $f(x)=\frac{2 x_{0}^{2}}{x^{3}}$
4. Let X be standard normal r.v. that is $X \hookrightarrow \mathcal{N}(0,1)$.
(a) Find the distribution of the r.v. $Y=\frac{X^{2}}{2}$.

Solution: We have $S_{Y}=\mathbb{R}^{+}$then $F_{Y}(y)=0$ and $f_{Y}(y)=0$, for $y \leq 0$. For $y>0$,

$$
\begin{aligned}
F_{Y}(y) & =P\left(X^{2} \leq 2 y\right) \\
& =P(-\sqrt{2 y} \leq X \leq \sqrt{2 y}) \\
& =F_{X}(\sqrt{2 y})-F_{X}(-\sqrt{2 y}) .
\end{aligned}
$$

Hence

$$
f_{Y}(y)=F_{Y}^{\prime}(y)=\frac{F_{X}^{\prime}(\sqrt{2 y})+F_{X}^{\prime}(-\sqrt{2 y})}{\sqrt{2 y}}
$$

But remember that

$$
F_{X}^{\prime}(x)=\frac{1}{\sqrt{2 \pi}} \exp \left(-\frac{x^{2}}{2}\right)
$$

hence

$$
f_{Y}(y)=\frac{1}{\sqrt{4 y \pi}}(\exp (-y)+\exp (-y))=\frac{\exp (-y)}{\sqrt{y \pi}} \text { for all } y>0
$$

(b) Deduce $E\left[X^{2}\right]$ and $\operatorname{Var}\left[X^{2}\right]$.

Solution:

$$
E\left[X^{2}\right]=E[2 Y]=2 \int_{0}^{\infty} \frac{y e^{-y}}{\sqrt{y \pi}} d y=\frac{2}{\sqrt{\pi}} \int_{0}^{\infty} \sqrt{y} e^{-y} d y=\frac{2}{\sqrt{\pi}} \Gamma\left(\frac{3}{2}\right)
$$

where $\Gamma(p)=\int_{0}^{+\infty} e^{-t} t^{p-1} d t$. And

$$
E\left[X^{4}\right]=E\left[4 Y^{2}\right]=4 \int_{0}^{\infty} \frac{y^{2} e^{-y}}{\sqrt{y \pi}} d y=\frac{4}{\sqrt{\pi}} \int_{0}^{\infty} y^{\frac{5}{2}} e^{-y} d y=\frac{4}{\sqrt{\pi}} \Gamma\left(\frac{7}{2}\right)
$$

Consequently

$$
\operatorname{Var}\left(X^{2}\right)=E\left[X^{4}\right]-\left(E\left[X^{2}\right]\right)^{2}=\frac{4}{\sqrt{\pi}}\left(\Gamma\left(\frac{7}{2}\right)-\frac{1}{\pi} \Gamma\left(\frac{3}{2}\right)^{2}\right)
$$

5. Find the MGF: of the following distributions and deduce their expectation and their variance.
(a) 1. Bernoulli distribution, 2. Binomial distribution, 3. Poisson distribution, 4. Geometric distribution, 5. Exponential distribution with parameter $\lambda, 6$. Normal distribution with mean μ and variance σ^{2}.

Discrete Distributions

1. Bernoulli p.m.f.: $f(k)=p^{k}(1-p)^{1-k}, k=0,1, \mathcal{B}(p)$ and $0<p<1$, MGF: $M(t)=1-p+p e^{t}$, $-\infty<t<\infty, \mu=p, \sigma^{2}=p(1-p)$.
2. Uniform p.m.f.: $f(k)=\frac{1}{m}, k=1,2, \ldots, m, \mathcal{U}(m) m>0, \mu=\frac{m+1}{2}, \sigma^{2}=\frac{m^{2}-1}{12}$.
3. Binomial p.m.f.: $f(k)=\frac{n!}{k!(n-k)!} p^{k}(1-p)^{n-k}, k=0,1,2, \ldots, n \mathcal{B}(n, p), 0<p<1$, MGF: $M(t)=\left(1-p+p e^{t}\right)^{n},-\infty<t<\infty, \mu=n p, \sigma^{2}=n p(1-p)$,
4. Geometric p.m.f.: $f(k)=(1-p)^{k-1} p, x=1,2,3, \ldots, \mathcal{G}(p), 0<p<1, M(t)=\frac{p e^{t}}{1-(1-p) e^{t}}$, $t<-\ln (1-p) \mu=\frac{1}{p}, \sigma^{2}=\frac{1-p}{p^{2}}$.
5. Hypergeometric $f(k)=\frac{\binom{N_{1}}{k}\binom{N_{2}}{n-k}}{\binom{N}{n}}, k \leq n, k \leq N_{1}, n-k \leq N_{2}$ for $N_{1}>0, N_{2}>0$ and $N=N_{1}+N_{2}, \mu=n \frac{N_{1}}{N}, \sigma^{2}=n \frac{N_{1}}{N} \frac{N_{2}}{N} \frac{N-n}{N-1}$.
6. Poisson p.m.f.: $f(k)=e^{-\lambda} \frac{\lambda^{k}}{k!}, k=0,1,2, \ldots \mathcal{P}(\lambda) ; \lambda>0$, MGF: $M(t)=e^{\lambda\left(e^{t}-1\right)},-\infty<t<\infty$ $\mu=\lambda, \sigma^{2}=\lambda$
7. Negative Binomial p.m.f.: $f(k)=\binom{k-1}{r-1} p^{r}(1-p)^{k-r}, k=r, r+1, r+2, \ldots 0<p<1, r=$ $1,2,3, \ldots$, MGF: $M(t)=\frac{\left(p e^{t}\right)^{r}}{\left[1-(1-p) e^{t}\right]^{r}}, t<-\ln (1-p), \mu=\frac{r}{p}, \sigma^{2}=\frac{r(1-p)}{p^{2}}$

Continuous Distributions:

1. Uniform p.d.f. $f(x)=\frac{1}{b-a}, a \leq x \leq b, \mathcal{U}(a, b)-\infty<a<b<\infty$, MGF: $M(t)=\frac{e^{t b}-e^{t a}}{t(b-a)}, t=0$; $M(0)=1, \mu=\frac{a+b}{2}, \sigma^{2}=\frac{(b-a)^{2}}{12}$.
2. Normal p.d.f. $f(x)=\frac{1}{\sigma \sqrt{2 \pi}} \exp \left(-\frac{(x-\mu)^{2}}{2^{2}}\right),-\infty<x<\infty, \mathcal{N}\left(\mu, \sigma^{2}\right)-\infty<\mu<\infty$, MGF: $M(t)=e^{\mu t+\frac{\sigma^{2} t^{2}}{2}},-\infty<t<\infty, \sigma>0 E(X)=\mu, \operatorname{Var}(X)=\sigma^{2}$.
3. Exponential p.d.f. $f(x)=\frac{1}{\theta} e^{-x / \theta}, 0 \leq x<\infty, \theta>0$, MGF: $M(t)=\frac{1}{1-\theta t}, t<\frac{1}{\theta}, \mu=\theta, \sigma^{2}=\theta^{2}$.
4. Chi-square p.d.f. $f(x)=\frac{1}{\Gamma(r / 2) 2^{r / 2}} x^{r / 2-1} e^{-x / 2}, 0<x<\infty \quad \chi^{2}(r), r=1,2, \ldots$, MGF: $M(t)=$ $\frac{1}{(1-2 t)^{r / 2}}, t<\frac{1}{2} \mu=r, \sigma^{2}=2 r$
5. Gamma p.d.f. $f(x) \neq \frac{1}{\Gamma(\alpha)} \theta^{\alpha} x^{\alpha-1} e^{-x / \theta}, 0<x<\infty \alpha>0, \theta>0$, MGF: $M(t)=\frac{1}{(1-\theta t)^{\alpha}}, t<\frac{1}{\theta}$ $\mu=\alpha \theta, \sigma^{2}=\alpha \theta^{2}$
6. Beta p.d.f. $f(x)=\frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha) \Gamma(\beta)} x^{\alpha-1}(1-x)^{\beta-1}, 0<x<1 \alpha>0, \beta>0, \mu=\frac{\alpha}{\alpha+\beta}, \sigma^{2}=\frac{\alpha \beta}{(\alpha+\beta+1)(\alpha+\beta)^{2}}$
