PHYSICS 301
Solutions $1^{\text {st }}$ HOMEWORK
Dr. V. Lempesis

Hand in: Tuesday $2^{\text {nd }}$ of March 2014

1. For two complex numbers $z_{1}=x_{1}+i y_{1}$ and $z_{2}=x_{2}+i y_{2}\left(z_{2} \neq 0\right)$ find the number z_{1} / z_{2}.

Solution:

$z_{1} / z_{2}=\left(x_{1}+i y_{1}\right) /\left(x_{2}+i y_{2}\right)=\frac{\left(x_{1}+i y_{1}\right)\left(x_{2}-i y_{2}\right)}{\left(x_{2}+i y_{2}\right)\left(x_{2}-i y_{2}\right)}=$
$\frac{x_{1} x_{2}-i x_{1} y_{2}+i y_{1} x_{2}+i y_{1}\left(-i y_{2}\right)}{x_{2}^{2}+y_{2}^{2}}=\frac{\left(x_{1} x_{2}+y_{1} y_{2}\right)+i\left(y_{1} x_{2}-x_{1} y_{2}\right)}{\left(x_{2}^{2}+y_{2}^{2}\right)}=$
$\frac{\left(x_{1} x_{2}+y_{1} y_{2}\right)}{\left(x_{2}^{2}+y_{2}^{2}\right)}+i \frac{\left(y_{1} x_{2}-x_{1} y_{2}\right)}{\left(x_{2}^{2}+y_{2}^{2}\right)}$
2. What geometrical object is represented by the equation $|z-1+3 i|=2$?

Solution:

Let $z=x+i y$ then we have:
$|z-1+3 i|=2 \Rightarrow|z-1+3 i|^{2}=4 \Rightarrow(z-1+3 i) \cdot(\bar{z}-1-3 i)=4$
$\Rightarrow(x+i y-1+3 i) \cdot(x-i y-1-3 i)=4 \Rightarrow$
$[(x-1)+i(y+3)] \cdot[(x-1)-i(y+3)]=4 \Rightarrow$
$(x-1)^{2}+(y+3)^{2}=4$
So the object is a circle with radius equal to 2 and centered at the point $\left(x_{0}, y_{0}\right)=(1,-3)$.
3. Express the following complex numbers in exponential form:
$2+2 \sqrt{3} i, \quad-5+5 i$.

Solution:

a) $z=2+2 \sqrt{3} i \Rightarrow|z|=\sqrt{2^{2}+(2 \sqrt{3})^{2}}=\sqrt{16}=4$. Also

$$
\begin{aligned}
& \operatorname{Arg}(z)=\arctan (2 \sqrt{3} / 2) \Rightarrow \operatorname{Arg}(z)=\arctan (\sqrt{3}) \\
& \Rightarrow \operatorname{Arg}(z)=\pi / 3
\end{aligned}
$$

Thus $z=4 e^{i \pi / 3}$.
b) $z=-5+5 i \Rightarrow|z|=\sqrt{(-5)^{2}+(5)^{2}}=5 \sqrt{2}$

$$
\begin{aligned}
& \operatorname{Arg}(z)=\arctan (5 /-5) \Rightarrow \operatorname{Arg}(z)=\arctan (-1) \\
& \Rightarrow \operatorname{Arg}(z)=3 \pi / 4
\end{aligned}
$$

Thus $z=5 \sqrt{2} e^{i 3 \pi / 4}$.
4. Represent graphically on the $x-y$ plane the following complex numbers: $6\left(\cos 240^{\circ}+i \sin 240^{\circ}\right), 2 e^{-i \pi / 4}$.

Solution:

5. Find the square root of i.

Solution:

$z=i \Rightarrow|z|=z=1 e^{i \pi / 2}$. So if w is the square root we have

$$
\begin{gathered}
w^{2}=z \Rightarrow w^{2}=1 e^{i \pi / 2} \Rightarrow w^{2}=1 e^{i(\pi / 2+2 k \pi)} \Rightarrow \\
w=\sqrt{1} e^{i(\pi / 2+2 k \pi) / 2}, \quad(k=0,1) \\
w= \begin{cases}e^{i \pi / 4} & k=0 \\
e^{i 3 \pi / 4} & k=1\end{cases}
\end{gathered}
$$

