
The Sampling Distributions of Sample Statistics:

<u>Case 1:</u> The Sampling Distribution of the Sample Mean \overline{X}

<u>Case 2:</u> The Sampling Distribution of the Difference between two Sample Means $\overline{X}_1 - \overline{X}_2$:

When $n \ge 30$ & σ_1^2 and σ_2^2 are Known & Normal or Non-Normal distribution. Then

$$Mean(\bar{X}_{1} - \bar{X}_{2}) = \mu_{\bar{X}_{1} - \bar{X}_{2}} = \mu_{1} - \mu_{2}$$

$$Variance(\bar{X}_{1} - \bar{X}_{2}) = \sigma_{\bar{X}_{1} - \bar{X}_{2}}^{2} = \frac{\sigma_{1}^{2}}{n_{1}} + \frac{\sigma_{2}^{2}}{n_{2}}$$

$$Standard error(\bar{X}_{1} - \bar{X}_{2}) = \sigma_{\bar{X}_{1} - \bar{X}_{2}} = \sqrt{\frac{\sigma_{1}^{2}}{n_{1}} + \frac{\sigma_{2}^{2}}{n_{2}}}$$

$$\bar{X}_{1} - \bar{X}_{2} \sim N\left(\mu_{1} - \mu_{2}, \frac{\sigma_{1}^{2}}{n_{1}} + \frac{\sigma_{2}^{2}}{n_{2}}\right)$$

$$Z = \frac{(\bar{X}_1 - \bar{X}_2) - (\mu_1 - \mu_2)}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}} \sim N(0, 1)$$

<u>Case 3:</u> The Sampling Distribution of the Sample Proportion \hat{p} :

When $n \ge 30$, np > 5, nq > 5 and $\hat{p} = \frac{x}{n}$.

Then

Mean $(\hat{p}) = \mu_{\hat{p}} = p$ Variance $(\hat{p}) = \sigma_{\hat{p}}^2 = \frac{pq}{n}$ Standard error $(\hat{p}) = \sigma_{\hat{p}} = \sqrt{\frac{pq}{n}}$ $\hat{p} \sim N\left(p, \frac{pq}{n}\right)$ $Z = \frac{\hat{p} - p}{\sqrt{\frac{pq}{n}}} \sim N(0,1)$

<u>Case 4:</u> The Sampling Distribution of Difference between two Sample Proportions $\hat{p}_1 - \hat{p}_2$:

When $n_1 \ge 30, n_2 \ge 30, n_1 p_1 > 5, n_1 q_1 > 5, n_2 p_2 > 5, n_2 q_2 > 5$ and $\hat{p}_1 = \frac{x_1}{n_1}, \hat{p}_2 = \frac{x_2}{n_2};$ $\hat{p}_1 - \hat{p}_2 = \frac{x_1}{n_1} - \frac{x_2}{n_2}.$

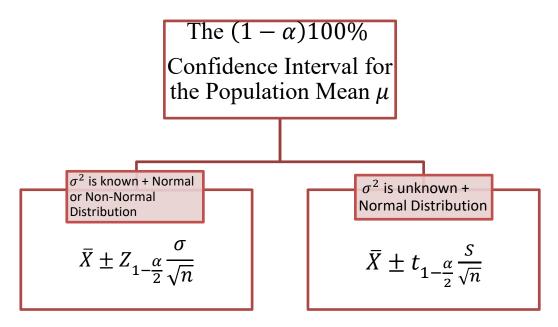
Then

Mean
$$(\hat{p}_1 - \hat{p}_2) = \mu_{\hat{p}_1 - \hat{p}_2} = p_1 - p_2$$

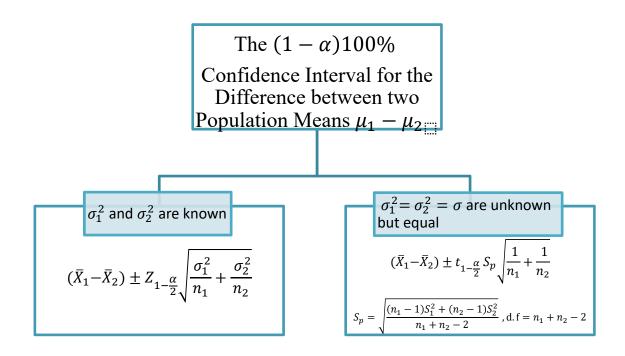
Variance $(\hat{p}_1 - \hat{p}_2) = \sigma_{\hat{p}_1 - \hat{p}_2}^2 = \frac{p_1 q_1}{n_1} + \frac{p_2 q_2}{n_2}$

Standard deviation
$$(\hat{p}_1 - \hat{p}_2) = \sigma_{\hat{p}_1 - \hat{p}_2} = \sqrt{\frac{p_1 q_1}{n_1} + \frac{p_2 q_2}{n_2}}$$

 $\hat{p}_1 - \hat{p}_2 \sim N\left(p_1 - p_2, \frac{p_1 q_1}{n_1} + \frac{p_2 q_2}{n_2}\right)$
 $Z = \frac{(\hat{p}_1 - \hat{p}_2) - (p_1 - p_2)}{\sqrt{\frac{p_1 q_1}{n_1} + \frac{p_2 q_2}{n_2}}} \sim N(0,1)$


Estimations:

1. Point Estimation for the Population Parameters:


	Population Parameter	Point Estimator (Sample Statistic)
Mean	μ	\overline{X}
Variance	σ^2	S ²
Standard Deviation	σ	S
Proportion	p	\hat{p}
The Difference between	$\mu_1 - \mu_2$	$\bar{X}_1 - \bar{X}_2$
two Means	<i>M</i> 1 <i>M</i> 2	<u> </u>
The Difference between	$p_1 - p_2$	$\hat{p}_1 - \hat{p}_2$
two Proportions	P1 P2	P1 P2

2. <u>Confidence Intervals for the Population Parameters:</u>

<u>Case 1:</u> The Confidence Interval for the Population Mean μ :

<u>Case 2:</u> The Confidence Interval for the Difference between two Population Means $\mu_1 - \mu_{2:}$

<u>Case 3:</u> The Confidence Interval for the Population Proportion *p*:

When $n \ge 30$, np > 5, nq > 5 and $\hat{p} = \frac{x}{n}$.

Then the $(1 - \alpha)100\%$ confidence interval for *p* is

$$\hat{p} \pm Z_{1-\frac{\alpha}{2}} \sqrt{\frac{\hat{p}\hat{q}}{n}}$$

<u>Case 4:</u> The Confidence Interval for the Difference between two Population Proportions $p_1 - p_2$:

When $n_1 \ge 30, n_2 \ge 30, n_1 p_1 > 5, n_1 q_1 > 5, n_2 p_2 > 5, n_2 q_2 > 5$ and $\hat{p}_1 = \frac{x_1}{n_1}, \hat{p}_2 = \frac{x_2}{n_2},$ $\hat{p}_1 - \hat{p}_2 = \frac{x_1}{n_1} - \frac{x_2}{n_2}.$

Then the $(1 - \alpha)100\%$ confidence interval for $p_1 - p_2$ is

$$(\hat{p}_1 - \hat{p}_2) \pm Z_{1 - \frac{\alpha}{2}} \sqrt{\frac{\hat{p}_1 \hat{q}_1}{n_1} + \frac{\hat{p}_2 \hat{q}_2}{n_2}}$$

The General Formulas:

 $Z = \frac{value-mean}{standard\ error}$

estimator ± (reliability cofficient×standard error)

Or estimator \pm margin of error

where,

Standard error = standard deviation

Estimator = Point estimate

Reliability coefficient = table value = $Z_{1-\frac{\alpha}{2}}$ or $t_{1-\frac{\alpha}{2}}$

Hypotheses Testing:

- A hypothesis is a statement about one or more populations.
- A statistical hypothesis is a conjecture (or a statement) concerning the population which can be evaluated by appropriate statistical technique.
- We usually test the null hypothesis (H_0) against the alternative (or the research) hypothesis (H_A or H_1) by choosing one of the following situations: Two-sided hypothesis:

 $H_0: \theta = \theta_0$ against $H_A: \theta \neq \theta_0$

One-sided hypothesis:

- (i) $H_0: \theta \ge \theta_0$ against $H_A: \theta < \theta_0$
- (ii) $H_0: \theta \leq \theta_0$ against $H_A: \theta > \theta_0$
- There are 4 possible situations in testing a statistical hypothesis:

		Condition of Null Hypothesis H_0 (Nature/Reality)	
		H_0 is true H_0 is false	
Possible	Accepting H_0	Correct	Type II error
Action		Decision	(β)
(Decision)	Rejecting H_0	Type I error	Correct Decision
		(α)	

- There are two types of errors:
 - (i) Type I error = Rejecting H_0 when H_0 is true P(Type I error) = P(Rejecting $H_0 | H_0$ is true) = α Which is called the significance level of the test.
 - (ii) Type II error = Accepting H_0 when H_0 is false P(Type II error) = P(Accepting $H_0 | H_0$ is false) = β
- The test statistic has the following form:

 $Test Statistic = \frac{estimate - hypotheized parameter}{standard error of the estimate}$

1. Hypotheses Testing for the population Mean (μ) :

	1		
Hypotheses	$H_0: \mu = \mu_0 \ \nu s$ $H_A: \mu \neq \mu_0$	$ \begin{array}{l} H_0: \mu \leq \mu_0 \ \nu s \\ H_A: \mu > \mu_0 \end{array} $	$ \begin{array}{l} H_0: \mu \geq \mu_0 \ vs \\ H_A: \mu < \mu_0 \end{array} $
Assumptions:	First Case: σ^2 is known; Normal or Non-Normal Distribution		
Test Statistic (T.S.)	$Z = \frac{\bar{X} - \mu_0}{\sigma / \sqrt{n}} \sim N(0, 1)$		
Rejection Region (R.R.) & Acceptance Region (A.R.) of H_0	$\begin{array}{c c} & 1 - \alpha \\ & \alpha/2 \\ R.R. \\ of H_0 - Z_{1-\frac{\alpha}{2}} \\ & Z_{1-\frac{\alpha}{2}} \\ \end{array} \begin{array}{c} \alpha/2 \\ R.R. \\ & R.R. \\ & \alpha/2 \\ \\$	$1 - \alpha$ A.R. of H_0 $Z_{1-\alpha}$ R.R. of H_0	$\begin{array}{c} \alpha \\ A.R. \text{ of } H_0 \\ \sigma f H_0 \\ -Z_{1-\alpha} \end{array}$
Critical Value	$-Z_{1-\frac{\alpha}{2}}$ and $Z_{1-\frac{\alpha}{2}}$	$Z_{1-\alpha}$	$-Z_{1-\alpha}$
Decision	We reject H_0 (and acce $Z < -Z_{1-\frac{\alpha}{2}}$ or $Z > Z_{1-\frac{\alpha}{2}}$	Ept H_A) at the significant $Z > Z_{1-\alpha}$	ce level α if: $Z < -Z_{1-\alpha}$
Assumptions:	Second Case:	σ^2 is unknown; Norma	al Distribution
Test Statistic (T.S.)	$T = \frac{\bar{x} - \mu_0}{S/\sqrt{n}} \sim t_{(n-1)};$ d. f = v = n - 1		
Rejection Region (R.R.) & Acceptance Region (A.R.) of H_0	$\begin{array}{c c} & 1-\alpha \\ \alpha/2 \\ R.R. \\ of H_0 - t_{1-\frac{\alpha}{2}} \\ t_{1-\frac{\alpha}{2}} \\ t_{1-\frac{\alpha}{2}} \\ t_{1-\frac{\alpha}{2}} \\ \end{array}$	$\begin{array}{c c} & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & &$	$\begin{array}{c} 1 - \alpha \\ 1 - \alpha \\ A.R. \text{ of } H_0 \\ -t_{1-\alpha} \end{array}$
Critical Value	$-t_{1-\frac{\alpha}{2}}$ and $t_{1-\frac{\alpha}{2}}$	t_{1-lpha}	$-t_{1-lpha}$
	We reject H_0 (and accept H_A) at the significance level α if:		
Decision	$T < -t_{1-\frac{\alpha}{2}}$ or $T > t_{1-\frac{\alpha}{2}}$	$T > t_{1-\alpha}$	$T < -t_{1-\alpha}$

2. Hypotheses Testing for the Difference Between Two Population Means $(\mu_1 - \mu_2)$ (Independent Populations):

	1		1
Hypotheses	$H_0: \mu_1 = \mu_2 \ \nu s$ $H_A: \mu_1 \neq \mu_2$	$H_0: \mu_1 \le \mu_2 \ \nu s \\ H_A: \mu_1 > \mu_2$	$ \begin{array}{l} H_0: \mu_1 \geq \mu_2 \ \nu s \\ H_A: \mu_1 < \mu_2 \end{array} $
Assumptions:	First Case: σ_1^2 and σ_2^2 are known		
Test Statistic (T.S.)	$Z = \frac{\bar{X}_1 - \bar{X}_2}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}} \sim N(0, 1)$		
Rejection Region (R.R.) & Acceptance Region (A.R.) of H_0	$\begin{array}{c c} & 1-\alpha \\ & \alpha/2 \\ \text{R.R.} \\ \text{of } H_0 - Z_{1-\frac{\alpha}{2}} \\ \end{array} \begin{array}{c} \alpha/2 \\ \text{R.R.} \\ Z_{1-\frac{\alpha}{2}} \\ \end{array} \begin{array}{c} \alpha/2 \\ \text{R.R.} \\ \text{of } H_0 \end{array}$	$1 - \alpha$ A.R. of H_0 $Z_{1-\alpha}$ R.R. of H_0	$\begin{array}{c} \alpha \\ A.R. \text{ of } H_0 \\ -Z_{1-\alpha} \end{array}$
Critical Value	$-Z_{1-\frac{\alpha}{2}}$ and $Z_{1-\frac{\alpha}{2}}$	$Z_{1-\alpha}$	$-Z_{1-\alpha}$
Decision	We reject H_0 (and acceled $Z < -Z_{1-\frac{\alpha}{2}}$ or $Z > Z_{1-\frac{\alpha}{2}}$	$P(T_A) \text{ at the significant}$ $Z > Z_{1-\alpha}$	ce level α if: $Z < -Z_{1-\alpha}$
Assumptions:	Second Case: σ_1^2 and σ_2^2 are unknown but equal ($\sigma_1^2 = \sigma_2^2 = \sigma^2$)		
Test Statistic (T.S.)	$T = \frac{\bar{X}_1 - \bar{X}_2}{\sqrt{\frac{s_p^2}{n_1} + \frac{s_p^2}{n_2}}} \sim t(n_1 + n_2 - 2), df = v = n_1 + n_2 - 2$ $s_p^2 = \frac{(n_1 - 1)S_1^2 + (n_2 - 1)S_2^2}{n_1 + n_2 - 2}$		
Rejection Region (R.R.) & Acceptance Region (A.R.) of H_0	$\begin{array}{c c} \alpha/2 & 1-\alpha \\ \alpha/2 & A.R. \text{ of } H_0 \\ \text{of } H_0 & -t_{1-\frac{\alpha}{2}} & t_{1-\frac{\alpha}{2}} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \alpha/2 \\ R.R. \\ \text{of } H_0 \\ \text{of } H_0 \end{array}$	$ \begin{array}{c} 1 - \alpha \\ A.R. \text{ of } H_0 \end{array} $ $ \begin{array}{c} \alpha \\ t_{1-\alpha} \end{array} $ R.R. of H_0	$\begin{array}{c} & 1 - \alpha \\ & 1 - \alpha \\ A.R. \text{ of } H_0 \\ \text{of } H_0 \\ -t_{1-\alpha} \end{array}$
Critical Value	$-t_{1-\frac{\alpha}{2}}$ and $t_{1-\frac{\alpha}{2}}$	t_{1-lpha}	$-t_{1-lpha}$
Decision	We reject H_0 (and acce $T < -t_{1-\frac{\alpha}{2}}$ or $T > t_{1-\frac{\alpha}{2}}$	ept H_A) at the significant $T > t_{1-\alpha}$	the level α if: $T < -t_{1-\alpha}$

3. Confidence Interval and Hypotheses Testing for the Difference Between Two Population Means $(\mu_1 - \mu_2 = \mu_D)$ for Dependent (Related) Populations: Paired t-Test:

Calculate the Quantities	 The differences (D-observations): D_i = X_i − Y_i, i = 1,2,,n Sample Mean of the D-observations: D̄ = Σⁿ_{i=1}D_i/n Sample Variance of the D-observations: S²_D = Σⁿ_{i=1}(D_i − D̄)²/n-1 Sample Standard Deviation of the D-observations: S_D = √S²_D 		
	Confidence Interv	val for $\mu_D = \mu_1 - \mu_2$	
$\begin{array}{c} 100(1-\alpha)\%\\ \text{Confidence}\\ \text{Interval for }\mu_D \end{array}$	$\overline{D} \pm t_{1-rac{lpha}{2}}rac{S_D}{\sqrt{n}}$, $df = v = n-1$		
	Hypotheses Testi	ng for $\mu_D = \mu_1 - \mu_2$	
Hypotheses	$H_A: \mu_1 \neq \mu_2$ or $H_0: \mu_D = 0 \ \nu s$	$H_0: \mu_1 \le \mu_2 \ vs$ $H_A: \mu_1 > \mu_2$ or $H_0: \mu_D \le 0 \ vs$ $H_A: \mu_D > 0$	$H_0: \mu_1 \ge \mu_2 \ vs$ $H_A: \mu_1 < \mu_2$ or $H_0: \mu_D \ge 0 \ vs$ $H_A: \mu_D < 0$
Test Statistic (T.S.)	$\begin{array}{c c} H_A: \mu_D \neq 0 & H_A: \mu_D > 0 & H_A: \mu_D < 0 \\ \hline T = \frac{\overline{D}}{S_D / \sqrt{n}} \sim t(n-1) , df = v = n-1 \end{array}$		
Rejection Region (R.R.) & Acceptance Region (A.R.) of H_0	$\begin{array}{c c} & 1-\alpha \\ & \alpha/2 \\ R.R \\ \text{of } H_0 - t_{1-\frac{\alpha}{2}} \\ \end{array} \begin{array}{c} \alpha/2 \\ R.R. \\ f_{1-\frac{\alpha}{2}} \\ \end{array} \begin{array}{c} \alpha/2 \\ R.R. \\ f_{1-\frac{\alpha}{2}} \\ \end{array} \begin{array}{c} \alpha/2 \\ R.R. \\ f_{1-\frac{\alpha}{2}} \\ \end{array} \end{array}$	$ \begin{array}{c} 1 - \alpha \\ A.R. \text{ of } H_0 \\ t_{1-\alpha} \\ \end{array} \\ R.R. \\ of H_0 \end{array} $	$\begin{array}{c} \alpha \\ n.R. \\ of H_0 \\ -t_{1-\alpha} \end{array}$
Critical Value	$-t_{1-\frac{\alpha}{2}}$ and $t_{1-\frac{\alpha}{2}}$	$t_{1-\alpha}$	$-t_{1-lpha}$
Decision	We reject H_0 (and acceled $T < -t_{1-\frac{\alpha}{2}}$ or $T > t_{1-\frac{\alpha}{2}}$	$P(t H_A)$ at the significance $T > t_{1-\alpha}$	the level α if: $T < -t_{1-\alpha}$

4. Hypotheses To	esting for	the Population	Proportion	(p):
------------------	------------	----------------	------------	---------------

Hypotheses	$H_0: p = p_0 \ vs$ $H_A: p \neq p_0$	$ \begin{array}{l} H_0: p \leq p_0 \ vs \\ H_A: p > p \end{array} $	$H_0: p \ge p_0 \ vs$ $H_A: p < p_0$
Test Statistic (T.S.)	$Z = \frac{1}{\sqrt{\underline{p}}}$	$\frac{\hat{p} - p_0}{\frac{0}{n} - p_0} \sim N(0, 1) ,$	$\hat{p} = \frac{X}{n}$
Rejection Region (R.R.) & Acceptance Region (A.R.) of H_0	$\begin{array}{c c} & 1-\alpha \\ \alpha/2 \\ R.R. \\ of H_0 - Z_{1-\frac{\alpha}{2}} \\ \end{array} \begin{array}{c} \alpha/2 \\ R.R. \\ A.R. of H_0 \\ Z_{1-\frac{\alpha}{2}} \\ \end{array} \begin{array}{c} \alpha/2 \\ R.R. \\ of H_0 \\ \end{array}$	$1 - \alpha$ A.R. of H_0 $Z_{1-\alpha}$ R.R. of H_0	$\begin{array}{c} \alpha \\ A.R. \text{ of } H_0 \\ end{tabular} \\ -Z_{1-\alpha} \end{array}$
Critical Value	$-Z_{1-\frac{\alpha}{2}}$ and $Z_{1-\frac{\alpha}{2}}$	$Z_{1-\alpha}$	$-Z_{1-\alpha}$
We reject H_0 (and accept H_A) at the significance level d			the level α if:
Decision	$Z < -Z_{1-\frac{\alpha}{2}}$ or $Z > Z_{1-\frac{\alpha}{2}}$	$Z > Z_{1-\alpha}$	$Z < -Z_{1-\alpha}$

5. Hypotheses Testing for the Difference Between Two Population Proportions $(p_1 - p_2)$:

Hypotheses	$H_0: p_1 = p_2 \ vs$	$H_0: p_1 \le p_2 \ vs$	$H_0: p_1 \ge p_2 \ vs$
Trypotneses	$H_A: p_1 \neq p_2$	$H_A: p_1 > p_2$	$H_A: p_1 < p_2$
Test Statistic (T.S.)	$Z = \frac{\hat{p}_1 - \hat{p}_2}{\sqrt{\frac{\bar{p}(1-\bar{p})}{n_1} + \frac{\bar{p}(1-\bar{p})}{n_2}}} \sim N(0,1)$ $\hat{p}_1 = \frac{X_1}{n_1}, \ \hat{p}_2 = \frac{X_2}{n_2}, \ \bar{p} = \frac{X_1 + X_2}{n_1 + n_2}$		
Rejection Region (R.R.) & Acceptance Region (A.R.) of H_0	$\begin{array}{c} \alpha/2 \\ R.R. \\ of H_0 - Z_{1-\frac{\alpha}{2}} \end{array} \xrightarrow{\alpha/2} Z_{1-\frac{\alpha}{2}} \\ R.R. \\ \alpha/2 \\ R.$	$ \begin{array}{c} 1 - \alpha \\ A.R. \text{ of } H_0 \\ \hline Z_{1-\alpha} \\ \end{array} \\ \begin{array}{c} \alpha \\ R.R. \\ \text{ of } H_0 \end{array} $	$\begin{array}{c} & & 1 - \alpha \\ & & & \\ \alpha & & \\ \text{R.R.} & & \\ \text{of } H_0 & -Z_{1-\alpha} \end{array}$
Critical Value	$-Z_{1-\frac{\alpha}{2}}$ and $Z_{1-\frac{\alpha}{2}}$	$Z_{1-\alpha}$	$-Z_{1-\alpha}$
	We reject H_0 (and accept H_A) at the significance level α if:		
Decision	$Z < -Z_{1-\frac{\alpha}{2}}$ or $Z > Z_{1-\frac{\alpha}{2}}$	$Z > Z_{1-\alpha}$	$Z < -Z_{1-\alpha}$