
symmetryS S

Article

A Novel Centrosymmetric Fe(III) Complex with Anionic
Bis-pyrazolyl-s-triazine Ligand; Synthesis, Structural
Investigations and Antimicrobial Evaluations

Saied M. Soliman 1,*, Hessa H. Al-Rasheed 2,* , Sobhy E. Elsilk 3 and Ayman El-Faham 1,2

����������
�������

Citation: Soliman, S.M.;

Al-Rasheed, H.H.; Elsilk, S.E.;

El-Faham, A. A Novel

Centrosymmetric Fe(III) Complex

with Anionic Bis-pyrazolyl-s-triazine

Ligand; Synthesis, Structural

Investigations and Antimicrobial

Evaluations. Symmetry 2021, 13, 1247.

https://doi.org/10.3390/

sym13071247

Academic Editor: György Keglevich

Received: 29 June 2021

Accepted: 10 July 2021

Published: 12 July 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Chemistry, Faculty of Science, Alexandria University, Ibrahimia, P.O. Box 426,
Alexandria 21321, Egypt; aelfaham@ksu.edu.sa

2 Department of Chemistry, College of Science, King Saud University, P.O. Box 2455,
Riyadh 11451, Saudi Arabia

3 Bacteriology Unit, Botany Department, Faculty of Science, Tanta University, Tanta 31527, Egypt;
sobhy.elsilk@science.tanta.edu.eg

* Correspondence: saeed.soliman@alexu.edu.eg or saied1soliman@yahoo.com (S.M.S.);
halbahli@ksu.edu.sa (H.H.A.-R.); Tel.: +20-111-136-1059 (S.M.S.); +966-114-673-195 (H.H.A.-R.)

Abstract: Reaction of 2,4-bis(3,5-dimethyl-1H-pyrazol-1-yl)-6-methoxy-1,3,5-triazine (MBPT) pincer
ligand with FeCl3 in acidic medium (1:1 v/v) afforded the [Fe(BPT)Cl2(CH3OH)] complex of the
hydrolyzed monobasic ligand: 4,6-bis(3,5-dimethyl-1H-pyrazol-1-yl)-1,3,5-triazin-2(1H)-one (HBPT).
In this complex, the Fe(III) ion is hexacoordinated with one anionic pincer ligand unit (BPT−1),
two chloride ions, and one coordinated methanol molecule. It crystallized in the monoclinic crystal
system and centrosymmetric P21/c space group with Z = 2 and unit cell parameters of a = 7.309(2) Å,
b = 25.461(8) Å, c = 9.918(3) Å and β = 102.646(7)◦. The structure of this complex is stabilized by C–H
. . . Cl intramolecular hydrogen bonding interactions with donor acceptor distances ranging from
3.577(3)–3.609(3) Å while its supramolecular structure is controlled by intermolecular O–H . . . O,
O–H . . . N, and C–H . . . Cl hydrogen bonding interactions. Hirshfeld analysis of molecular packing
indicates that the percentages of the Cl . . . H, C . . . O, O . . . H, C . . . C, H . . . C, and N . . . H contacts
are 21.1, 1.7, 10.2, 2.1, 8.6, and 10.4%, respectively. The nature and relative strength of the different
coordination interactions in the [Fe(BPT)Cl2(CH3OH)] complex are discussed based on atoms in
molecules theory. Antimicrobial evaluations indicated that the [Fe(BPT)Cl2(CH3OH)] complex
showed moderate antibacterial and antifungal activities compared to amoxicillin and ampicillin
antibiotics as standard drugs.

Keywords: pincer; Fe(III); hydrolysis; Hirshfeld; antimicrobial activity; anionic bis-pyrazolyl-s-triazine

1. Introduction

Iron is considered as a readily available and cheap element with little hazardous effects
on the environment. Iron-containing compounds play a crucial role in ammonia production
by the Haber–Bosch process and in homogenous molecular catalysis [1–4]. Iron has a great
importance in a variety of biological systems of mammals and other simple microorganisms.
Generally, it is considered to have low toxicity, but high iron concentrations in living cells
can cause some harmful effects, as can iron deficiency [5–7]. High iron levels in the body
can catalyze the generation of harmful free radicals [8,9]. In this regard, powerful chelators
can be used to control this risk by controlling iron reactivity. Also, iron (III) complexes with
N-donor ligands have been reported to have promising anticancer activity [10–13].

2,4-bis(3,5-dimethyl-1H-pyrazol-1-yl)-6-methoxy-1,3,5-triazine (MBPT, Figure 1) pin-
cer ligand is a powerful nitrogen tridentate chelator that can form metal complexes by the
reaction with a diversity of metal salts [14–16]. The self-assembly of this functional ligand
with metal salts such as Ni(II), Mn(II), Co(II), Zn(II) and Cd(II) comprising different anions
(Cl−, NO3

−, ClO4
−) has afforded a variety of mononuclear homo and heteroleptic metal
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(II) complexes with coordination numbers varying from five to eight [14–16]. Using the
same technique, the same ligand underwent metal ion-mediated hydrolysis in the presence
of CuCl2 or Cu(ClO4)2, leading to the formation of one-dimensional Cu(II) coordination
polymers [17]. Similar hydrolytic reactions were detected in the presence of other metal (II)
salts such as ZnCl2, PdCl2, and PtCl2 [15,16,18]. It was confirmed that the role of the metal
ion is to increase the acidity of the water molecule, which eases the hydrolytic reaction,
as was confirmed by the acid-mediated hydrolysis of MBPT in the presence of aqueous
hydrochloric acid solution to afford HBPT (Figure 1) [17]. In continuation of this work, we
tested the reaction of this pincer ligand with FeCl3 in acidic medium. The structure of the
new [Fe(BPT)Cl2(CH3OH)] complex was confirmed using elemental analysis, FTIR spectra,
and single crystal X-ray diffraction. Evaluation of the antimicrobial activity of the studied
complex was also presented.
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Figure 1. Structure of the MBPT ligand and its hydrolyzed product (HBPT).

2. Materials and Methods
2.1. Materials and Physical Measurements

Chemicals were purchased from the Sigma-Aldrich Company (Chemie GmbH, 82024
Taufkirchen, Germany). CHN analyses were performed using a Perkin Elmer 2400 Elemen-
tal Analyzer (PerkinElmer, Inc., 940 Winter Street, Waltham, MA, USA). Iron content was
determined using the Shimadzu atomic absorption spectrophotometer (AA-7000 series,
Shimadzu, Ltd., Tokyo, Japan). An Alpha Bruker spectrophotometer (Billerica, MA, USA)
was used to measure the FTIR spectra in KBr pellets (Figure S1, Supplementary Data).

2.2. Synthesis
2.2.1. Synthesis of S-Triazine-Based Ligand

The ligand MBPT was prepared as previously reported [14] (Supplementary Data,
Method S1, Figures S2 and S3).

2.2.2. Synthesis of [Fe(BPT)(CH3OH)Cl2] Complex

The studied complex was synthesized using a self-assembly technique by mixing the
acidified aqueous (2 drops of 1:1 v/v HCl) solution of FeCl3 (1 mmol, 162 mg) with an
equimolar amount of MBPT ligand in ethanol. The mixture was left for slow evaporation
and the resulting brown crystals were collected by filtration.

Yield; C18H24N8Fe2Cl6, 69%. Anal. Calc. C, 37.95%; H, 4.09%; N, 22.13%; Cl, 16.00%;
Fe, 12.60%. Found: C, 37.80%; H, 4.01%; N, 21.98%; Cl, 15.88%; Fe, 12.49%; IR (KBr, cm−1):
3454, 1630, 1606, 1586(Sh), 1475 (Figure S1, Supplementary Data).

2.3. Crystal Structure Determination

The crystal structure of the [Fe(BPT)(CH3OH)Cl2] complex was determined by using
a Bruker D8 Quest diffractometer employing SHELXTL and SADABS programs [19–21].
Hirshfeld calculations were performed using the Crystal Explorer 17.5 program [22–26].
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2.4. Antimicrobial Studies

The antimicrobial activities of the [Fe(BPT)(CH3OH)Cl2] complex against different
microbes were determined following the reported method [27]. More details regarding the
antimicrobial assay are found in Supplementary Data (Method S2).

2.5. Atoms in Molecules (AIM) and Natural Charge Calculations

Gaussian 09 [28] software was used for all single point calculations using the MPW1PW91/
TZVP [29] method. Charge population and atoms in molecules (AIM) analyses were per-
formed using NBO 3.1 [30] and Multiwfn [31] programs, respectively. Based on literature,
s-triazine pincer ligands are well known to have a weak ligand field and form only high
spin complexes due to the electron-deficient characters of the s-triazine moiety. Hence, the
calculations were performed based on the fact that the presented complex was a high spin
iron (III) complex with a total spin of 5/2 and sextet multiplicity [14].

3. Results

Reaction of the bis-pyrazolyl-s-triazine (MBPT) ligand with ferric chloride in acidic
medium afforded a novel Fe(III) pincer complex. It was observed that the reaction pro-
ceeded with O-demethylation of the methoxy group [32,33] and furnished the hydroxy-s-
triazine derivative 4,6-bis(3,5-dimethyl-1H-pyrazol-1-yl)-1,3,5-triazin-2(1H)-one (HBPT),
which underwent in situ reaction with FeCl3 and afforded the [Fe(BPT)(CH3OH)Cl2] com-
plex in moderate yield. In this complex, the hydrolyzed ligand (HBPT) acted as a mononeg-
ative tridentate NNN-pincer chelate (Scheme 1). The structure of the [Fe(BPT)(CH3OH)Cl2]
was confirmed with the aid of elemental analysis, FTIR spectra, and single crystal
X-ray diffraction.
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4. Discussion 

Scheme 1. Reaction of MBPT with FeCl3 in acidic medium.

4. Discussion
4.1. Structure Description

The molecular structure of the heteroleptic [Fe(BPT)(CH3OH)Cl2] complex is shown in
Figure 2. This Fe(III) complex crystallized in the monoclinic crystal system and P21/c space
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group with Z = 2 and unit cell parameters of a = 7.309(2) Å, b = 25.461(8) Å, c = 9.918(3) Å,
and β = 102.646(7)◦, where the asymmetric unit contained one molecular formula. The
most relevant geometric parameters are listed in Table 1.
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Figure 2. Structure and atom numbering of the [Fe(BPT)(CH3OH)Cl2] complex.

Table 1. Crystal data and structure refinement for the [Fe(BPT)(CH3OH)Cl2] complex.

Empirical formula C14H18Cl2FeN7O2

Formula weight 443.10 g/mol

Temperature 115(2) K

Wavelength 0.71073 Å

Crystal system monoclinic

Space group P21/c

Unit cell dimensions a = 7.309(2) Å α = 90◦

b = 25.461(8) Å β = 102.646(7)◦

c = 9.918(3) Å γ = 90◦

Volume 1800.9(9) Å3

Z 4

Density (calculated) 1.634 g/cm3

Absorption coefficient 1.160 mm−1

F(000) 908

Crystal size, mm3 0.18 × 0.19 × 0.22

Theta range for data collection 2.25 to 25.30◦

Index ranges −8 ≤ h ≤ 8, −30 ≤ k ≤ 30,
−11 ≤ l ≤ 11

Reflections collected 20,165
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Table 1. Cont.

Independent reflections 3277 [R(int) = 0.0346]

Completeness to theta 99.90%

Refinement method Full-matrix least-squares on F2

Data/restraints/parameters 3277/0/244

Goodness-of-fit on F2 1.083

Final R indices [I > 2sigma(I)] R1 = 0.0339, wR2 = 0.0860

R indices (all data) R1 = 0.0381, wR2 = 0.0881

Largest diff. peak and hole 1.630 and −0.563

CCDC no. 2090699

In this neutral complex, the Fe(III) was hexacoordinated with a distorted octahedral
coordination environment. The Fe(III) was coordinated with one mononegative tridentate
BPT−1 and one coordinated chloride ion in the basal plane of the distorted octahedron,
while the axial positions were occupied by one chloride anion and a coordinated methanol
molecule. Similar to other M(II)–MBPT pincer complexes [14–16], there were three Fe–N
interactions with the organic pincer ligand where the Fe–N(s-triazine) was generally shorter
(Fe1–N5: 2.079(2) Å) than any of the Fe–N(pyrazole) bonds (Fe1–N1: 2.154(2) Å and Fe1–N3:
2.156(2) Å). The equatorial Fe1–Cl1 (2.255(8) Å) was slightly shorter than the axial Fe1–Cl2
(2.302(9) Å), while the Fe1–O2 bond with the coordinated methanol was 2.112(2) Å. As
calculated by the continuous shape measure (CShM) tool, the values of the CShM were
2.45 and 13.72 against the perfect octahedron and trigonal prism, respectively indicating a
slightly distorted octahedral rather than a trigonal prism [34–37]. The triazine ring itself
was not perfectly planar as indicated from the torsion angles where the maximum deviation
from planarity was 7.4(3)◦ for C11–N6–C13–N7 atoms. The mean plane passing through
the triazine ring created angles of 2.96 and 7.24◦ with the pyrazolyl moieties N4C8C7C6N3
and C3C2C1N1N2, respectively. The reason for these twists could be attributed to the
small size of Fe(III) and its high charge density, along with the steric hinder between the
coordinated pyrazolyl moieties [15].

The structure of this complex was stabilized by C4–H4C . . . Cl1 and C9–H9B . . . Cl1
intramolecular hydrogen bonds with donor acceptor distances of 3.609(3) and 3.577(3)
Å, respectively. On the other hand, its supramolecular structure was controlled by in-
termolecular O2–H2A . . . O1, O2–H2A . . . N6, C2–H2 . . . Cl2, and C14–H14C . . . Cl2
hydrogen bonding interactions with donor acceptor distances of 2.694(3), 3.181(3), 3.605(3),
and 3.735(4) Å, respectively. A list of hydrogen bond details is given in Table 2. In addition,
presentation of the packed molecular units via these noncovalent interactions is shown in
Figure 3.

4.2. Quantitative Analysis of Molecular Packing

Hirshfeld analysis is a simple tool to investigate the molecular packing in the crystal
structure at both the qualitative and quantitative levels. In dnorm surfaces shown in Figure 4,
there were many red regions representing contacts with shorter distances than the van
der Waals radii (vdWs) sum of the interacting atoms. On the other hand, the blue and
white regions were related to intermolecular contacts having longer and equal interaction
distances than the vdWs radii sum of the interacting atoms, respectively. For simplicity, the
most significant contacts are labeled A to F, which correspond to Cl . . . H, C . . . O, O . . .
H, C . . . C, H . . . C, and N . . . H interactions, respectively.
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The hydrogenic H . . . H intermolecular interactions were the most abundant among
the other contacts. They contributed 40.9% to the whole fingerprint area (Figure S4;
Supplementary Data). There were no red regions related to the H . . . H interactions,
indicating longer or equal distances compared to twice the vdW radii of hydrogen atoms.
On the other hand, the percentage contributions of the Cl . . . H, C . . . O, O . . . H, C . . . C,
H . . . C, and N . . . H contacts were quite less. Their percentages were 21.1, 1.7, 10.2, 2.1,
8.6, and 10.4%, respectively. All these contacts appeared as red regions in the dnorm map
(Figure 4).

Table 2. Bond lengths (Å) and angles (◦) for the [Fe(BPT)(CH3OH)Cl2] complex.

Bond Distance Bond Distance

Fe1–N5 2.079(2) Fe1–N3 2.156(2)

Fe1–O2 2.112(2) Fe1–Cl1 2.2550(8)

Fe1–N1 2.154(2) Fe1–Cl2 2.3020(9)

Bond Angle Bond Angle

N5–Fe1–O2 83.02(8) N1–Fe1–Cl1 106.04(6)

N5–Fe1–N1 73.31(8) N3–Fe1–Cl1 106.46(6)

O2–Fe1–N1 86.24(8) N5–Fe1–Cl2 93.35(6)

N5–Fe1–N3 73.02(8) O2–Fe1–Cl2 175.69(6)

O2–Fe1–N3 85.46(8) N1–Fe1–Cl2 94.96(6)

N1–Fe1–N3 146.04(8) N3–Fe1–Cl2 91.28(7)

N5–Fe1–Cl1 170.77(6) Cl1–Fe1–Cl2 95.87(3)

O2–Fe1–Cl1 87.76(6)

Fe1–N5 2.079(2) Fe1–N3 2.156(2)

Fe1–O2 2.112(2) Fe1–Cl1 2.2550(8)

Fe1–N1 2.154(2) Fe1–Cl2 2.3020(9)
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The shortest contact distances were 2.656Å (Cl2 . . . H2), 3.056 Å (C11 . . . O1), 1.714
Å (O1 . . . H2A), 2.685 Å (H4A . . . C13), 3.331 Å (C13 . . . C3), and 2.615 Å (N7 . . . H5A).
A summary of these short contacts and their interaction distances is found in Table 3. In
the fingerprint plots shown in Figure 5, the de and di are distances from a point on the
surface to the nearest nucleus outside and inside the surface, respectively. Hence, the pattern
of the fingerprint plot gives strong indication of the strength of interaction. The majority
of these interactions appeared as sharp spikes in their fingerprint plots, indicating that
these contacts were the most important and had short interaction distances (Figure 5).
Also, the total area of the fingerprint plot represents the percentage of the intermolecular
interactions that occurred in the crystal. As a result, the decomposition of the fingerprint
plot shown in Figure 5 gives the percentages of each intermolecular interaction (Figure S4;
Supplementary Data).

Table 3. Summary of the intermolecular interactions and the corresponding shortest interaction distances.

Contact Distance Contact Distance

O1 . . . H2A 1.714 C11 . . . O1 3.056
O1 . . . H4A 2.595 Cl1 . . . H9C 2.814
H4A . . . C13 2.685 Cl2 . . . H2 2.656
C11 . . . C2 3.373 Cl2 . . . H7 2.713
C13 . . . C3 3.331 Cl2 . . . H14C 2.685
N7 . . . H5A 2.615

4.3. NBO and AIM Studies

The natural charges of the ligand groups and the iron atom were calculated in order to
determine the number of charge transferences from the ligand groups as Lewis bases to the
Fe(III) as Lewis acid. The charge at the Fe atom decreased to 0.9509 e instead of +3 for the
isolated Fe(III) ion. Hence, the amount of negative electron density transferred to Fe(III)
from the ligand groups was 2.0492 e. The equatorial chloride (0.5571 e) transferred higher
negative electron density to the Fe(III) than the axial one (0.5913 e). The amount of electron
density transferred from the mononegative tridentate organic N-chelate to the Fe(III) was
0.7424 e, while the corresponding value for the coordinated methanol was 0.1583 e.

On the other hand, the atom–atom interactions could be classified into two main
categories, which were the closed shell and sharing interactions [38–41]. Based on the
topology analysis of the atoms in molecules (AIM) theory presented in Table 4, the Fe–
N(s-triazine) bond (Fe1–N5) had higher electron density (ρ(r)) than any of the Fe–N(pyrazole)
bonds (Fe1–N1 and Fe1–N3). Hence, the Fe–N(s-triazine) was stronger and with higher
covalent characters than the Fe–N(pyrazole) bonds, which was further confirmed by the
negative H(r) values and V(r)/G(r) > 1. In contrast, the Fe–O bond with the coordinated
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methanol had low ρ(r), positive H(r) value, and V(r)/G(r) ~ 1, indicating little covalent
character of this bond [38–41].
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Table 4. Atoms in molecules topology parameters of the [Fe(BPT)(CH3OH)Cl2] complex.

Bond ρ(r) G(r) a V(r) b Eint H(r) c V(r)/G(r)

Fe1–N5 0.0810 0.1030 −0.1250 39.21 −0.0220 1.21
Fe1–N1 0.0584 0.0728 −0.0803 25.21 −0.0075 1.10
Fe1–N3 0.0580 0.0715 −0.0787 24.70 −0.0072 1.10
Fe1–Cl1 0.0720 0.0730 −0.0898 28.18 −0.0168 1.23
Fe1–Cl2 0.0687 0.0597 −0.0762 23.91 −0.0165 1.28
Fe1–O2 0.0421 0.0795 −0.0791 24.82 0.0004 0.99

a Kinetic energy density (a.u.). b Potential energy density (a.u.). c Total energy density (a.u.).

4.4. Antimicrobial Studies

The biological activity of the [Fe(BPT)(CH3OH)Cl2] complex was evaluated against
selected Gram-positive (Staphylococcus aureus, Bacillus cereus, and Bacillus subtilis) and
Gram-negative (Escherichia coli and Pseudomonas aeruginosa) bacteria as well as the fungus
Candida albicans. The inhibition zone diameters were found to be in the range 0.9–1.0 mm
at 10 µg/mL of the [Fe(BPT)(CH3OH)Cl2] complex. Similar Fe(III) complexes with mono-
and bis-pyrazolyl s-triazine ligands showed larger inhibition zone diameters (12–25 mm)
against the same microbes [42]. It is worth concluding that the antimicrobial activities
depend not only on the ligand and nature of the coordination environment around the
metal ion but also on the type of substituent attached to the triazine moiety.

In addition, the Minimum Inhibitory Concentrations (MICs) were determined against
these microbes (Table 5). The results indicated broad spectrum antimicrobial action against
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these microbes with MIC values of 6.8, 9.7, 7.3, 7.9, 7.3, and 6.2 mM/L. The results indi-
cated moderate antibacterial and antifungal actions of the [Fe(BPT)(CH3OH)Cl2] complex
compared to the standard antibiotics amoxicillin and ampicillin.

Table 5. The MIC values (mM/L) of the [Fe(BPT)(CH3OH)Cl2] complex against different microbes
compared to some antibiotics.

Microbe [Fe(BPT)(CH3OH)Cl2] Amoxicillin Ampicillin

St. aureus 6.8 2.7 2.7
B. cereus 7.9 2.1 2.1
B. subtilis 7.3 2.7 3.6
E. coli 7.9 2.7 3.6
P. aeruginosa 7.3 2.1 2.9
C. albicans 6.2 3.4 4.3

5. Conclusions

A new hexacoordinated [Fe(BPT)Cl2(CH3OH)] pincer complex was synthesized by the
reaction of 2,4-bis(3,5-dimethyl-1H-pyrazol-1-yl)-6-methoxy-1,3,5-triazine (MBPT) with
FeCl3 in acidic medium. During the complexation process in an acidic medium, the
O-demethylation of the methoxy group occurred and furnished the hydroxy-s-triazine
derivative; 4,6-bis(3,5-dimethyl-1H-pyrazol-1-yl)-1,3,5-triazin-2(1H)-one (HBPT). The latter
underwent complexation with FeCl3 as an anionic NNN-pincer ligand coordinating the
Fe(III) by one short Fe–N(s-triazine) and two equidistant Fe–N(pyrazole) bonds. The hexa-
coordination environment was completed by two chloride ions and one methanol. The
[Fe(BPT)Cl2(CH3OH)] complex had moderate antimicrobial activity against some selected
microbes. Hirshfeld analysis was used to quantify the different intermolecular contacts
while atoms in molecules (AIM) topology parameters were used to describe the nature and
strength of coordination interactions in the [Fe(BPT)Cl2(CH3OH)] complex.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/sym13071247/s1, Method S1: Synthesis of MBPT, Method S2: Antimicrobial Studies, Figure S1:
FTIR spectra of the [Fe(BPT)(CH3OH)Cl2] complex, Figure S2: FTIR spectra of the ligand (MBPT),
Figure S3: 1H and 13C NMR spectra of the ligand (MBPT). Chemical shifts are reported in parts per
million (ppm), Figure S4: Summary of the intermolecular interactions and their percentages.
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