Department of Chemical Engineering
 King Saud University

Test 1

ChE 318
Time: 90 min
Roll Number

- Carry out detailed calculations in answer sheet and provide final answer on this paper
- Open book examination (No notes allowed even if written on the book)

Question 1 (33 pts):

Water in the bottom of a narrow metal tube is held at a constant temperature of 303 K . The total pressure of air (assumed dry) is $1.01325 \times 10^{5} \mathrm{~Pa}(1.0 \mathrm{~atm})$ and the temperature is 303 K . Water evaporates and diffuses through the air in the tube and the diffusion path $\left(z_{2}-z_{1}\right)$ is 0.2 m long. The tube diameter is 10 mm . The diagram is similar to Fig. 6.2-2a. The vapor pressure of water vapors at 303 K is 4242 Pa . The experimental value of the diffusion coefficient at 298 K is $2.6 \times 10^{-5} \mathrm{~m}^{2} / \mathrm{s}$.

I. Determine the molecular diffusion coefficient at 303 K . $\frac{D_{A B 2}}{D_{A B 1}}=\left(\frac{T_{2}}{T_{1}}\right)^{1.75} ; D_{A B 2}=2.6 \times 10^{-5}\left(\frac{303}{298}\right)^{1.75}=\mathbf{2 . 6 8} \times \mathbf{1 0}^{-\mathbf{5}} \mathbf{m}^{2} / \mathrm{s}$	7
II. Determine p_{B} in Pa . $p_{B M}=\frac{p_{B 2}-p_{B 1}}{\ln \frac{p_{B 2}}{p_{B 1}}}=\frac{p_{A 1}-p_{A 2}}{\ln \frac{p_{B 2}}{p_{B 1}}}=\frac{4242-0}{\ln \frac{101325-0}{101325-4242}}=\mathbf{9 9 , 1 8 9 P a}$	5
III. Calculate the rate of evaporation $\left(\mathrm{N}_{\mathrm{A}}\right)$ at steady state in $\mathrm{kg} \mathrm{mol} / \mathrm{m}^{2} \cdot s$ and $\mathrm{kg} / \mathrm{m}^{2} \cdot \mathrm{~s}$ $\begin{aligned} & N_{A}=\frac{D_{A B}}{\left(z_{2}-z_{1}\right)} \frac{P}{R T} \frac{p_{A 1}-p_{A 2}}{p_{B M}} \\ & =\frac{2.68 \times 10^{-5}}{0.2} \frac{1.01325 \times 10^{5}}{8314 \times 303} \frac{(4242-0)}{99,189}=\mathbf{2 . 3} \times \mathbf{1 0}^{-7} \frac{\mathbf{k g ~ m o l}}{\boldsymbol{m}^{2} \cdot \boldsymbol{s}}=\mathbf{4 1 . 4} \times \mathbf{1 0}^{-\mathbf{7}} \frac{\mathbf{k g}}{\mathbf{m}^{2} \cdot \boldsymbol{s}} \end{aligned}$	13
IV. Calculate the steady state rate of evaporation (N_{A}) if the air is humid (not dry) and the percentage relative humidity, i.e. $100\left(p_{A} / p_{A}^{o}\right)=30 \%$, where p_{A} is the partial pressure of the water vapor in the air and p_{A}^{o} is the vapor pressure. $\begin{aligned} & p_{A 2}=\frac{30}{100} p_{A}^{o}=0.3 \times 4242=1273 \mathrm{~Pa} \\ & p_{B M}=\frac{4242-1273}{\ln \frac{101325-1273}{101325-4242}}=98,560 \mathrm{~Pa} \\ & N_{A}=\frac{D_{A B}}{\left(z_{2}-z_{1}\right)} \frac{P}{R T} \frac{p_{A 1}-p_{A 2}}{p_{B M}} \\ & =\frac{2.68 \times 10^{-5}}{0.2} \frac{1.01325 \times 10^{5}}{8314 \times 303} \frac{(4242-1273)}{98,560}=\mathbf{1 . 6 2} \times \mathbf{1 0}^{-\mathbf{7}} \frac{\mathbf{~} \mathbf{~ g ~ m o l}}{\mathbf{m}^{2} \cdot \boldsymbol{s}} \end{aligned}$ Note: There is almost 30% decrease in the flux due to a 30% decrease in driving force since the change in the $p_{B M}$ is negligible.	8

Question 2 (33 pts):

Water drop (spherical) is suspended in still air (assumed dry) by a fine wire at 303 K at $1.01325 \times 10^{5} \mathrm{~Pa}$ $(1.0 \mathrm{~atm})$. Its initial radius was $\mathrm{r}_{0}=4 \mathrm{~mm}$. The vapor pressure of water at 303 K is $p_{A}^{0}=4242 \mathrm{~Pa}$ and the density of water is $995.71 \mathrm{~kg} / \mathrm{m}^{3}$. Note that

- Conditions in this problem are same as in Question 1
- Area, $A=4 \pi r^{2} ;$ Volume,$V=(4 / 3) \pi r^{3} ;$ Mass $=\rho V$
- The time of evaporation can be computed using, $t_{F}=\frac{\rho_{A}}{M_{A}} \frac{\left(r_{0}^{2}-r_{F}^{2}\right)}{2 D_{A B}} \frac{R T}{P} \frac{p_{B M}}{p_{A 1}-p_{A 2}}$

I. Calculate the time in seconds for its complete evaporation ($\mathrm{rF}=0 \mathrm{~mm}$). $t_{F}=\frac{\rho_{A}}{M_{A}} \frac{\left(r_{0}^{2}-r_{F}^{2}\right)}{2 D_{A B}} \frac{R T}{P} \frac{p_{B M}}{p_{A 1}-p_{A 2}}=\frac{995.71}{18} \frac{\left(0.004^{2}-0\right)}{2 \cdot 2.68 \times 10^{-5}} \frac{8314 \times 303}{101325} \frac{99,189}{4242-0}=\mathbf{9 5 9 9} \boldsymbol{s}$	12
II. Calculate the time in second required for the evaporation of half of the total initial mass of the water drop $\begin{aligned} & \frac{\text { Mass }_{\mathrm{F}}}{\text { Mass }_{\mathrm{i}}}=\frac{\text { Volume }_{\mathrm{F}}}{\text { Volume }_{\mathrm{i}}}=\frac{r_{\mathrm{F}}^{3}}{r_{\mathrm{i}}^{3}}=0.5 ; r_{\mathrm{F}}^{3}=0.5 r_{\mathrm{i}}^{3} ; r_{F}=3.175 \mathrm{~mm} \\ & t_{F}=\frac{\rho_{A}}{M_{A}} \frac{\left(r_{0}^{2}-r_{F}^{2}\right)}{2 D_{A B}} \frac{R T}{P} \frac{p_{B M}}{p_{A 1}-p_{A 2}}=\frac{995.71}{18} \frac{\left(0.004^{2}-0.003175^{2}\right)}{2 \cdot 2.68 \times 10^{-5}} \frac{8314 \times 303}{101325} \frac{99,189}{4242-0} \\ & =\mathbf{3 5 5 1} \boldsymbol{s} \end{aligned}$	10
III. How much time in seconds will be required for its complete evaporation ($r_{F}=0 \mathrm{~mm}$) if initial radius was $r_{0}=2 \mathrm{~mm}$. (Detailed calculations not required). Since $t_{F} \propto r_{0}^{2}$ decreasing the initial radius by (1/2) will cause a (1/4) in the time of evaporation, i.e. $(9599 / 4)=\underline{\mathbf{2 4 0 0}}$ s.	5
IV. Calculate the time in seconds for its complete evaporation when $\mathrm{P}=0.1 \mathrm{~atm}=1.01325 \mathrm{x}$ $10^{4} \mathrm{~Pa}$ $t_{F}=\frac{\rho_{A}}{M_{A}} \frac{\left(r_{0}^{2}-r_{F}^{2}\right)}{2 D_{A B}} \frac{R T}{P} \frac{p_{B M}}{p_{A 1}-p_{A 2}}=\frac{995.71}{18} \frac{\left(4^{2}-0\right)}{2 \cdot 26.8 \times 10^{-5}} \frac{8314 \times 303}{10132.5} \frac{\mathbf{7 , 8 2 1}}{4242-0}=\mathbf{7 5 7 s}$ Note: $\left(D_{A B} P\right)$ is independent of pressure, but $\left(p_{B M}\right)$ will change.	6

Question 3 (34 pts):

A tube is coated on the inside with naphthalene and has an inside diameter of 25 mm and a length of $3.0-$ m . Air at 318 K and an average pressure of 101.3 kPa flows through this pipe at a velocity of $2 \mathrm{~m} / \mathrm{s}$. The surface temperature of the naphthalene can be assumed to be at 318 K and its vapor pressure at 318 K is $74 \mathrm{~Pa}=2.8 \times 10^{-5}\left(\mathrm{~kg} \mathrm{~mol} / \mathrm{m}^{3}\right)$. Assume that the D_{AB} of naphthalene in air at 318 K is $6.92 \times 10^{-5} \mathrm{~m}^{2} / \mathrm{s}$. For air, $\mu=1.932 \times 10^{-5} \mathrm{~Pa} \cdot \mathrm{~s}, \rho=1.114\left(\mathrm{~kg} / \mathrm{m}^{3}\right)$.

I. Compute Reynold number (N_{Re}), Schmidt number (N_{Sc}) $\begin{aligned} & N_{R e}=\left(\frac{D v \rho}{\mu}\right)=\left(\frac{0.025 \times 2 \times 1.114}{1.932 \times 10^{-5}}\right)=2883 \\ & N_{S c}=\frac{(\mu / \rho)}{D_{A B}}=\frac{\left(1.932 \times 10^{-5} / 1.114\right)}{6.92 \times 10^{-5}}=0.25 \end{aligned}$	6
II. What is the flow regime (laminar/turbulent) Since $N_{R e}>2100$, flow regime is turbulent	2
III. Determine k_{c}^{\prime} using appropriate equation or figure $\begin{aligned} & N_{S h}=k_{c}^{\prime} \frac{D}{D_{A B}}=0.023(2883)^{0.83}(0.25)^{0.33}=10.84 \\ & k_{c}^{\prime}=10.84 \frac{D_{A B}}{D}=0.030 \mathrm{~m} / \mathrm{s} \end{aligned}$	12
IV. Compute the volumetric flow rate in $\mathrm{m}^{3} / \mathrm{s}$ Volumetric flow rate $=$ Velocity $\times \mathrm{X}$-al area of tube $A=\frac{\pi}{4}\left(\frac{25}{1000}\right)^{2} ; v \times A=9.82 \times 10^{-4}$	2
V. Compute the total mass transfer area in $m^{2}=\pi D L=0.2356$	2
VI. Compute mean driving force if the inlet concentration, $C_{A 1}=0 \mathrm{~kg} \mathrm{~mol} / \mathrm{m}^{3}$ and outlet concentration, $C_{A 2}=2.2 \times 10^{-5} \mathrm{~kg} \mathrm{~mol} / \mathrm{m}^{3}$ $\begin{aligned} \left(C_{A i}-C_{A m}\right) \cong & \left(C_{A i}-\frac{C_{A 1}+C_{A 2}}{2}\right) \cong \frac{C_{A 2}-C_{A 1}}{\ln \frac{\left(C_{A i}-C_{A 2}\right)}{\left(C_{A i}-C_{A 1}\right)}}(\text { recommended }) \\ & =\frac{2.2 \times 10^{-5}-0}{\ln \frac{\left(2.8 \times 10^{-5}-2.2 \times 10^{-5}\right)}{\left(2.8 \times 10^{-5}-0\right)}}=1.428 \times 10^{-5} \mathrm{~kg} \mathrm{~mol} / \mathrm{m}^{3} \end{aligned}$	5
VII. Compute mass transfer rate, N_{A}, in $\mathrm{kg} \mathrm{mol} / \mathrm{s}$ $\begin{aligned} N_{A}(\mathrm{~kg} \mathrm{~mol} / \mathrm{s}) & =k_{c}(\pi D L)\left(c_{A i}-c_{A m}\right)=0.03 \frac{\mathrm{~m}}{\mathrm{~s}} \times 0.2356 \mathrm{~m}^{2} \times 1.428 \times 10^{-5} \frac{\mathrm{~kg} \mathrm{~mol}}{\mathrm{~m}^{3}} \\ & =1 \times 10^{-7} \end{aligned}$	5

