The carnivorous Venus flytrap uses prey-derived amino acid carbon to fuel respiration

Lukas Fasbender1, Daniel Maurer2, Jürgen Kreuzwieser2, Ines Kreuzer3, Waltraud X. Schulze4, Jörg Kruse2, Dirk Becker3, Saleh Alfarraj5, Rainer Hedrich3,5, Christiane Werner1 and Heinz Rennenberg2,5

1Institute of Forest Sciences, Chair of Ecosystem Physiology, University of Freiburg, Georges-Köhler-Allee 53/54, Freiburg 79110, Germany; 2Institute of Forest Sciences, Chair of Tree Physiology, University of Freiburg, Georges-Köhler-Allee 53/54, Freiburg 79110, Germany; 3Institute for Molecular Plant Physiology and Biophysics, University of Würzburg, Würzburg 97070, Germany; 4Department of Plant Systems Biology, University of Hohenheim, Stuttgart 70593, Germany; 5College of Science, King Saud University, PO Box 2455, Riyadh 11451, Saudi Arabia

Summary

- The present study was performed to elucidate the fate of carbon (C) and nitrogen (N) derived from protein of prey caught by carnivorous Dionaea muscipula. For this, traps were fed 13C/15N-glutamine (Gln).
- The release of 13CO2 was continuously monitored by isotope ratio infrared spectrometry. After 46 h, the allocation of C and N label into different organs was determined and tissues were subjected to metabolome, proteome and transcriptome analyses.
- Nitrogen of Gln fed was already separated from its C skeleton in the decomposing fluid secreted by the traps. Most of the Gln-C and Gln-N recovered inside plants were localized in fed traps. Among nonfed organs, traps were a stronger sink for Gln-C compared to Gln-N, and roots were a stronger sink for Gln-N compared to Gln-C. A significant amount of the Gln-C was respired as indicated by 13C-CO2 emission, enhanced levels of metabolites of respiratory Gln degradation and increased abundance of proteins of respiratory processes. Transcription analyses revealed constitutive expression of enzymes involved in Gln metabolism in traps.
- It appears that prey not only provides building blocks of cellular constituents of carnivorous Dionaea muscipula, but also is used for energy generation by respiratory amino acid degradation.

Introduction

In its natural environment in North and South Carolina, the Venus flytrap (Dionaea muscipula) has only limited access to nutrients required for growth and development from soil-derived sources (Roberts & Oosting, 1958; Brewer et al., 2011). Considerable amounts of minerals may only become available in the soil during sporadic fire events (Roberts & Oosting, 1958). To overcome this constraint and to compete successfully with other vegetation components, D. muscipula attracts insects by shape and color of traps (Joel et al., 1985; Ichisi et al., 1999; Schäfer & Ruxton, 2008; Kurup et al., 2013) and by the emission of volatile organic compounds that simulate the smell of food (Kreuzwieser et al., 2014). Dionaea captures attracted insects with active snap traps closing in fractions of a second after repetitive mechanostimulation of trigger hairs by the victim (Escalante-Pérez et al., 2011; Böhm et al., 2016a). It digests its prey in the hermetically closed traps by the release of an acidic enzyme cocktail mediating de-polymerization of macro-molecules by hydrolysis (Schulze et al., 2012; Libiakova et al., 2014; Paszota et al., 2014; Böhm et al., 2016a,b); it retrieves prey-derived organic compounds and ions by activation of transport processes (Scherzer et al., 2013, 2015; Kruse et al., 2014; Böhm et al., 2016a,b).

For growth and development of Dionaea, acquisition of nitrogen (N) from prey is of particular significance (Brewer et al., 2011; Kruse et al., 2014; Gao et al., 2015). N is present in prey mainly in the form of chitin and protein (Mariod et al., 2011; Finke, 2013). Hydrolysis of these macro-molecules to the monomeric constituents by chitinase and peptidase takes place in the closed traps that act as a ‘green stomach’. The prey-decomposing fluid containing these hydrolytic enzymes is provided by the gland-based secretory system on the inner surface of the traps (Schulze et al., 2012; Libiakova et al., 2014; Paszota et al., 2014; Bemm et al., 2016). Amino acids produced by peptidase activity in the pre-decomposing fluid are thought to be taken up into trap tissue. However, in recent trap feeding experiments with 13C/15N-labeled glutamine (Gln) or 13C/15N-labeled insect powder, 15N-label was recovered in fed traps and preferentially distributed to newly developing traps, but 13C-label could not be retrieved (Kruse et al., 2014; Gao et al., 2015). In addition, feeding of traps with unlabeled Gln inhibited 15N influx from root-absorbed 13C/15N-Gln into the traps, whereas influx...
of 13C into the traps from labeled Gln was maintained. Apparently, fed traps constitute a carbon (C) sink that even uses organic C from the roots. A high demand for organic C will develop in traps upon prey capture from the requirement to generate energy for trap closure and prey retention, as well as sustained production and release of the prey-decomposing cocktail from the glands at low photosynthetic activity (Pavlovic et al., 2010, 2011; Kruse et al., 2014). This is indicated by a loss of ATP (Jaffe, 1973; Williams & Bennett, 1980) and an increased rate of respiration (Pavlovic et al., 2010, 2011; Kruse et al., 2014). Based on these findings it is hypothesized that (1) N from prey-derived amino acids may be separated inside trap tissue from its C backbone, and may be subjected to long-distance transport in phloem and xylem to developing tissues; and (2) the C backbone of amino acids may be channeled into the TCA cycle for energy production by respiration and may be released as CO$_2$ into the atmosphere (Kruse et al., 2014; Gao et al., 2015).

To trace the destiny of prey-derived N and C in Dionaea plants, we here fed flytraps with highly enriched 13C/15N-Gln and monitored the release of 13CO$_2$ continuously online. The distribution of 13C- and 15N-label in fed traps and unfed plant organs of the carnivorous plant was analyzed after 46 h of exposure at ongoing consumption of the Gln fed. In addition, we determined the consequences of trap feeding for primary metabolism abundance as well as protein levels and gene expression of enzymes known to be involved in respiratory glutamate (Glu) catabolism (Hildebrandt et al., 2015). Our results show that carnivorous D. muscipula can use prey-derived amino acids as both a source of N for growth and development of the entire plant, and as an alternative respiratory substrate to fuel the energy demand for prey digestion.

Materials and Methods

Plant material and feeding experiments

Dionaea muscipula Ellis plants were purchased from a commercial supplier and grown for 3–4 months in a glasshouse at $24 \pm 4^\circ$C supplied with slow-release fertilizer and rainwater. Under these conditions, plants had limited access to mineral nutrients, resulting in a low N status (Kruse et al., 2014). For feeding experiments plants were transferred into 250 cm3 plastic pots containing nutrient-poor peat as substrate and grown in climate-controlled cabinets (HPS 1500; Heraeus Vötsch, Hanau, Germany) at day : night cycles of 16 h : 8 h, 25 : 20 $^\circ$C and 150 μmol m$^{-2}$ s$^{-1}$ photosynthetically active radiation during the light period. Plants were allowed to acclimatize to these growth conditions for 12 d receiving deionized water daily.

Feeding was performed with uniform 13C and 15N double labeled L-Gln (99% labeled each, Cambridge Isotope Laboratories, Inc., Tewksbury, MA, USA) by applying 1 mg 13C/15N-Gln mixed into 25 μL deionized water on three traps per plant. To prevent any loss of label and to facilitate the digestion process, the solution was pipetted onto a punched-out round piece of cellulose filter (Schleicher & Schuell GmbH, Dassel, Germany), 6 mm in diameter, that was covered with 10 mg homogenized and dried insect paste and applied to each trap (Kruse et al., 2014). Trap closure and digestion were triggered by mechanically stimulating the hairs inside the Dionaea traps (Böhm et al., 2016a,b). Immediately after labeling, the plants were placed into 1 liter (110 mm diameter, 200 mm height) borosilicate enclosures (Zitt-Thoma GmbH, Freiburg, Germany). Four enclosures were interfaced to a Delta Ray Isotope Ratio Infrared Spectrometer (Thermo Fisher Scientific, Bremen, Germany) for continuous measurement of 13CO$_2$: 15N$_2$ and CO$_2$ concentrations, respectively. Air temperature and relative air humidity were recorded downstream to each enclosure by Volkcraft DL-120 TH data loggers (Conrad Electronic SE, Hirschau, Germany). The enclosures were placed into climate-controlled cabinets set up with the plant’s growth conditions (see ‘Feeding experiments’ above). They were permanently flushed with synthetic air (Messer Industriegase GmbH, Bad Soden, Germany) containing 405.6 \pm 0.2 p.p.m. CO$_2$ at a rate of 200 ml min$^{-1}$ to maintain steady state conditions. Gas samples from three plant-containing enclosures and one empty control enclosure were connected to a valve system which selected the samples to be continuously analyzed by isotope laser spectroscopy. The measuring interval for each chamber was 9 min$^{-1}$.

After 46 h of each experiment, when traps were still in the process of consuming the Gln fed, Gln-fed plants were completely harvested and separated into Gln-fed and nonfed traps, leaves attached to fed and nonfed traps, fine roots and coarse roots. A total of six nonfed control plants were harvested in the same manner. Plant tissues were immediately shock-frozen in liquid N and stored at -80°C. Aliquots of the tissues were oven-dried and analyzed for stable C and N isotope abundance as well as total C and N contents.

Quantification of 13CO$_2$ emission from 13C/15N-Gln

Quantification of 13C emissions (nmol min$^{-1}$ g$^{-1}$ DW) was based (1) on the differences in CO$_2$ concentrations between the outlets of the empty control enclosure and the plant-containing enclosures as continuously analyzed by the Delta Ray Isotope Ratio Infrared Spectrometer (Thermo Fisher Scientific). We considered (2) the δ^{13}C values at enclosure outlets to calculate the total flux of 13CO$_2$ from the plants. The incoming air contained 405.6 \pm 0.2 p.p.m. CO$_2$ with a δ^{13}CO$_2$ value of $-5.63 \pm 0.11^{\circ}$ from the given flow rate of 200 ml min$^{-1}$. To account for the isotopic effect of photosynthetic discrimination in the light and the 13CO$_2$ evolved from respiratory 13C-Gln degradation, we calculated the net 13CO$_2$ flux in the chambers. Before the onset of Gln degradation, differences between the control enclosures and the plant-containing enclosures revealed an average net 13CO$_2$ uptake per plant of -8.7 ± 0.9 nmol min$^{-1}$ ($n=9$). All 13CO$_2$ flux rates higher than these initial values measured from (13C/15N)-Gln fed plants were assumed to originate from the Gln-tracer. This is a conservative approach to estimate the 13CO$_2$ released from respiration of fed Gln, since photosynthetic re-fixation of respired 13CO$_2$ is not considered; therefore, the 13CO$_2$ emission rates given constitute minimum values of respired 13C-tracer.
Total C and N content; δ\(^{13}\)C- and δ\(^{15}\)N-enrichment

Aliquots of 1–2 mg oven dried, pulsed plant tissue were weighed into tin capsules for total C and total N as well as stable C and N isotope analyses. Samples were combusted in an element analyzer (NA 2500; CE Instruments, Milan, Italy) coupled to an isotope ratio mass spectrometer (Delta Plus; Finnigan MAT, Bremen, Germany) via a Conflow II interface (Thermo-Finnigan MAT). To determine instrument drift and isotope linearity of the system, Glu with known isotope ratios was included as laboratory standard at different weights in every sequence of samples. Relative abundances (R) of stable isotopes in plant tissue, that is \(^{13}\)C: \(^{12}\)C and \(^{15}\)N: \(^{14}\)N ratios, were calculated as relative deviation from international standards (for \(^{13}\)C, Vienna Pee Dee belemnite; for \(^{15}\)N, atmospheric N\(_2\)) applying the δ annotation (Eqn 1):

\[
\delta_{\text{sample}} = \left(\frac{R_{\text{sample}}}{R_{\text{standard}}} - 1 \right) \times 1000 \quad \text{Eqn 1}
\]

Instrument precision amounted to 0.3 ± 0.2‰ for both δ\(^{13}\)C and δ\(^{15}\)N. Enrichment of different tissues in \(^{13}\)C and \(^{15}\)N above control levels was determined in response to feeding \(^{13}\)C/\(^{15}\)N-Gln. For enrichment of tissues in \(^{15}\)N (\(^{15}\)Ns), Eqn 2 was applied:

\[
15N_s (\mu\text{mol g}^{-1}) = \left[\left(N_S \times \text{atom}\% ^{15}N \times 10^{-2} \right) - \left(N_C \times \text{atom}\% ^{15}N \times 10^{-2} \right) \right] 10^{-1}
\]

where \(^{15}\)N\(_S\) is the enrichment of tissues (fed traps, nonfed traps, petioles of fed traps and nonfed traps, roots), \(N_S\) the N concentration of enriched tissues (\(\mu\text{g g}^{-1}\ \text{DW}\)), atom% \(^{15}\)N\(_S\) the \(^{15}\)N abundance of enriched tissues, and \(N_C\) and atom% \(^{15}\)N\(_C\) the respective values of control tissues (\(n = 9\)) indicating the natural isotope abundances. By taking the biomass of each tissue into account, \(^{15}\)N enrichment per tissue and recovery of the \(^{15}\)N applied in each tissue were calculated. A similar calculation for \(^{13}\)C enrichment above control levels was performed neglecting variation of \(^{13}\)C natural abundance by gas exchange (Farquhar et al., 1989).

Metabolome analyses

Relative abundances of polar low-molecular-weight metabolites present in above-ground \(Dionaea\) tissues were analyzed by GC-MS. For this, metabolites were extracted and derivatized using a modification of the method described by Kreuzwieser et al. (2009). Harvested plant material was quickly snap frozen in liquid N\(_2\) and stored at −80°C until analysis. Approximately 30 mg of frozen sample material was weighed into a cooled 1.5 ml reaction tube containing 500 µl cold 85% methanol and 100 ng µl\(^{-1}\) ribitol as internal standard. Tubes were vortexed briefly, heated to 65°C and shaked at 1400 r.p.m. for 15 min. Samples were then centrifuged at 14,000 g for 10 min; an aliquot of 80 µl of the supernatant was freeze-dried overnight. For derivatization, 10 µl of a 20 mg ml\(^{-1}\) solution of methoxyamine hydrochloride in anhydrous pyridine (Sigma-Aldrich Inc., Steinheim, Germany) was added to the dried extracts and samples were incubated at 30°C for 90 min with shaking at 1400 r.p.m. Thereafter, 15 µl \(N\)-methyl-N-(trimethylsilyl)-trifluoroacetamide (MSTFA; Sigma-Aldrich) was added and samples were incubated at 37°C for 30 min with shaking at 1400 r.p.m. Before GC-MS analysis, 5 µl of an n-alkane retention index calibration mixture was added and samples were transferred to GC-MS vials. Samples were then analysed on a GC-MS system (Agilent GC 6890N coupled to a 5975C quadrupole MS detector; Agilent Technologies, Palo Alto, CA, USA) equipped with an autosampler (MultiPurpose Sampler MPS2; Gerstel, Mülheim, Germany). All devices were controlled by the Agilent MASSHUNTER software (Agilent Technologies). Aliquots of 1 µl derivatized sample were injected in splitless mode into the system, and separated on a capillary column (HP-5 ms ultra inert, 0.25 mm ID, 0.5 µm film thickness, 30 m length; Agilent Technologies). Run conditions as well as MS settings were as described by Kreuzwieser et al. (2009). Analysis of raw data including peak detection, peak alignment and identification of compounds based on matching with the Golm Metabolome Database (Kopka et al., 2005) was performed with the Quantitative Analysis Module of the MASSHUNTER software (Agilent Technologies). Moreover, authentic standards were used for peak identification. Peak areas were normalized using the peak area of the internal standard, ribitol, and the fresh weight of samples. Artefact peaks and common contaminants were identified by analysis of ‘blank’ samples prepared in the same manner as biological samples. Signals corresponding to these artefacts were omitted from biological interpretation.

Gene expression analyses

RNA was isolated separately from each sample of fed traps, nonfed traps, leaves of fed traps and leaves of nonfed traps using a modified cetyltrimethylammonium bromide (CTAB)-based protocol. In brief, 0.1 g plant material powdered in liquid N was thoroughly mixed with 0.7 ml of hot (65°C) RNA extraction buffer (2% CTAB, 2% polyanlypyrroldione K 25 (PVP), 100 mM Tris/HCl, pH 8.0, 25 mM Na-EDTA, pH 8.0, and 2 M NaCl; 2.5% (v/v) 2-mercaptoethanol was added immediately before use). Following 10 min of incubation at 65°C and extraction with 1 volume of chloroform : isomyl alcohol (24:1, v/v), RNA was precipitated from the supernatant by adding 175 µl of 8 M LiCl overnight (4°C). RNA was collected by centrifugation, resuspended in diethylpyro carbonate (DEPC)-treated H\(_2\)O and precipitated in the presence of 0.1 volume of 3 M Na-acetate (pH 5.2) and 2.5 volumes of 96% EtOH. After a washing step using 70% EtOH, RNA was finally dissolved in 30 µl of DEPC-H\(_2\)O. DNA contamination was removed by DNase I treatment on a column (Roche, Basel, Switzerland). RNA quantity and quality were determined by capillary electrophoresis (Experion Automated Electrophoresis System and Experion RNA HighSense Analysis Kit; Bio-Rad Laboratories, Hercules, CA, USA).

Individual transcript levels were analyzed by quantitative real-time PCR (qRT-PCR). qRT-PCR was performed using a Realplex Mastercycler (Eppendorf, Hamburg, Germany), 1:20
diluted cDNA and the ABsolve QPCR SYBR Green Capillary Mix (Thermo Scientific, Waltham, MA, USA). Expression levels were quantified using a standard for each primer pair and normalized to 10 000 molecules of actin (DmACT) cDNA trans-
cripts. Gene-specific primers were designed using the software LIGHTCYCLER PROBE DESIGN 2.0 (Roche Life Science, Penzberg, Germany) based on the transcriptomic information available under http://tbro.carnivorom.com (release 1.03; Bemm et al., 2016). Individual transcripts deposited there are given in parentheses. The following primers were used: actin (comp-
p226979_c1_seq1), primer pair DmACTfw 5'-TCTTTGTAGTGGATGGAAGC-3' and DmACTrev 5'-GCAATGCCAGGAACCATGT-3'; asparagine synthetase (comp216588_c0_seq2), primer pair DmASN1fw 5'-TGTTCTAAGATCTGGA-3' and DmASN1rev 5'-AGTTTACACGCAATGAA-3'; Glu decar-
boxylase (comp234222_c2_seq2), primer pair, DmGADfw 5'-TCTGAAGAAGGAAAGGC-3' and DmGADrev 5'-ACTATGGGTTCGTTACAGAA-3'; 4 aminobutyrate-pyruvate transami-
nase (comp216013_c0.0_seq2), primer pair DmPOP2fw 5'-TAAATCAGCTACTGATCC-3' and DmPOP2rev 5'-GGTAATAGAATCTGGA-3'; oxoglutarate dehydrogenase (comp133088_c0_seq1), primer pair DmOGDHfw 5'-GCCGAGGGTGTCCTATATAGT-3' and DmOGDHcrev 5'-ATGACTCAGGAATTTAG-3'.

Proteomic analyses

Powdered plant material was extracted in 6 M urea, 2 M thiourea and 10 mM Tris/HCl, pH 8. A total of 10 μg protein was then digested with trypsin as previously described (Wu & Schulze, 2015). Tryptic peptide mixtures were analyzed by LC/MS/MS using a nanoflow Easy-nLC1000 (Thermo Scientific) as an HPLC system and a Quadrupole-Orbitrap hybrid mass spectrometer (Q-Exactive Plus, Thermo Scientific) as mass analyzer. Peptides were eluted from a 75 μm x 50 cm analytical column (Thermo Scientific) on a linear gradient running from 4 to 64% acetonitrile in 240 min and sprayed directly into the LTQ-Orbitrap mass spectrometer. Proteins were identified by MS/MS using information-dependent acquisition of fragmentation spectra of multiple charged peptides. Up to 12 data-dependent MS/MS spectra were acquired for each full-scan spectrum obtained at 60 000 full-width half-maximum resolution. Overall cycle time was c. 1 s.

Protein identification and ion intensity quantification were carried out by MAXQUANT, v.1.4.1.2 (Cox & Mann, 2008). Spectra were matched against the assembled transcriptome of D. muscipula (Bemm et al., 2016; 194 308 contigs) using Andromeda (Cox et al., 2011). Thereby, carbamidomethylation of cysteine was set as a fixed modification and oxidation of methionine as variable modification. Mass tolerance for the database search was set to 20 p.p.m. on full scans and 0.5 Da for fragment ions. Multiplicity was set to 1. For label-free quantifica-
tion, retention time matching between runs was chosen within a time window of 2 min. Peptide false discovery rate (FDR) and protein FDR were set to 0.01, while site FDR was set to 0.05. Hits to contaminants (e.g. keratins) and reverse hits identified by MaxQuant were excluded from further analysis.

Reported ion intensity values of extracted ion chromatograms were used for quantitative data analysis. cRacker (Zauber & Schulze, 2012) was used for label-free data analysis based on the MaxQuant output (evidence.txt). All proteotypic nonphospho-
peptides were used for quantification. Within each sample, ion intensities of each peptide ion species (each m/z) were normalized against total ion intensities in the sample (peptide ion intensity/total sum of ion intensities). Subsequently, each peptide ion species (i.e. each m/z value) was scaled against the average normalized intensities of that ion across all treatments. Normalized peptide ion intensities were then summed to protein intensities.

Fig. 1 Acquisition and plant internal distribution of 13C and 15N derived from (13C/15N)-Gln fed to Dionaea traps. (a)13C, (b) 15N, (c) 13C : 15N and C : N ratios of Dionaea plants after feeding (13C/15N)-Gln. Three traps of each Dionaea plant were fed with 1 mg 13C/15N-labeled Gln per trap for 46 h. The plants (n = 9) were harvested and separated into the tissues indicated. 13C and 15N contents were determined by IRMS. Quantification of 13C and 15N taken up and distributed within the plants was based on total dry mass of the individual tissues and the 13C and 15N contents. Data shown are means ± SD of nine independent experiments. Statistically significant differences between C : N ratios in (c) were calculated by ANOVA followed by a Tukey post-hoc test at P ≤ 0.05 and are shown by different letters beside bars.
Values from three biological replicates were averaged after normalization and scaling.

Statistical analyses

Normal distribution of the data was tested using the Shapiro–Wilk test, and the homogeneity of variances was tested operating the Levene2 test (both $P = 0.05$). One-way ANOVA ($P = 0.05$, $\alpha = 0.95$, Fisher’s post-hoc test) was used to determine significant differences between the treatments. The software ORIGIN PRO 9.1 (OriginLab Corp., Northampton, MA, USA) was used for the statistical analyses.

Results

When traps of *Dionaea* were fed 13C/15N-Gln, we found that 45% of the 13C-label, but only 25% of the 15N-label was retrieved by the traps within 46 h (Fig. 1). Apparently N of prey-derived amino compounds already becomes separated from its C skeleton by the prey-decomposing fluid secreted by gland cells into the external stomach. With 46 h of exposure, about half of 13C-label taken up was respired and emitted as 13CO$_2$ into the atmosphere (Figs 1a, 2). Respiration of Gln-derived C initially increased with time of exposure (Fig. 2), as indicated by a pronounced increase in respiratory 13CO$_2$ release. After c. 25 h, emission of Gln-derived 13CO$_2$ reached a maximum and declined during subsequent exposure (Fig. 2). The flux of 13CO$_2$ was significantly higher in the dark than in the light, indicating partial inhibition of the TCA cycle (Tcherkez et al., 2008; Priault et al., 2009) in the light.

The majority of Gln-derived 13C recovered inside the plants was found in fed traps (66% of total Gln-derived C); most of the remaining Gln-derived 13C recovered inside plants was about equally distributed between the leaves of fed traps, non-fed traps and their leaves. It amounted to c. 10% of total 13C inside plants for each of these organs. Only a minor portion of the 13C-label recovered was allocated to the roots (c. 3%).

Similar to 13C, the 15N from the Gln fed to the traps was also recovered inside the plant mainly in the fed traps (71%) (Fig. 1b). However, the distribution of 15N to other organs differed considerably from 13C distribution. Leaves of fed traps contained 13% and leaves of nonfed traps 10% of the 15N label, whereas nonfed traps contained c. 2% (Fig. 1b). Nonfed traps appear to be a much stronger sink for prey-derived 13C compared to 15N. This difference between 13C and 15N acquisition of non-fed traps is also indicated by a strongly enhanced 13C:15N ratio compared to all other tissues analyzed (Fig. 1c). The generally high but similar C:N ratios of *Dionaea* organs (Fig. 1c) are due to the relatively low N contents of *Dionaea* tissues (Kruse et al., 2014). With c. 5% of the 15N recovered, the roots were a stronger sink for 15N than for 13C (Fig. 1a,b).

Consistent with the emission of 13CO$_2$ derived from trap-fed Gln, the levels of metabolites of respiratory Gln degradation increased, particularly Gln itself and metabolites involved in the TCA cycle (Supporting Information Table S1; Figs 3, S1). Consistent with the assumption that the C-skeleton of Gln is used for respiratory energy gain, the levels of 2-oxoglutarate increased significantly. Slightly increased levels were also detected for fumarate and malate, but not for succinate, citrate or Glu. In addition, levels of amino acids of the pyruvate (alanine (Ala), valine (Val)) and aspartate (aspartic acid (Asp), isoleucine (Ile)) families were enhanced indicating the use of N derived from trap-fed Gln in different primary metabolic processes. The observation of elevated serine (Ser) levels in response to trap-fed Gln (Table S1) is consistent with prey-mediated stimulation of sulfur metabolism, since Ser is a direct precursor of cysteine (Cys) (Rennenberg & Herschbach, 2014). Stimulation of sulfur metabolism seems to be required for prey digestion in order to produce and secrete sulfur-rich hydrolytic enzymes into the ‘outer stomach’ of the traps for prey digestion (Rainer Hedrich, Heinz Rennenberg, unpublished results).
Transcription analyses by qRT-PCR revealed minor changes in the abundance of transcripts involved in respiratory Glu degradation and asparagine (Asn) synthesis upon Gln feeding of traps, but these changes were not statistically significant (Fig. S2). Apparently, constitutive transcription of genes mediating respiratory Glu degradation and Asn synthesis are sufficient to channel the C skeleton of Gln derived from prey capture into respiratory energy production. Since changes in metabolic activity can also be be achieved by changes in translation, fed traps of Dionaea were subjected to proteomic analyses. In these analyses, a total of 450 proteins were identified in traps (Table S2). The increased abundance of ribosomal proteins and elongation factors as well as calreticulin that is involved in protein folding can be interpreted as stimulation of de novo protein synthesis in traps fed Gln (Fig. 4). The enhanced protein abundance of pyruvate dehydrogenase in fed traps indicates increased metabolic channeling of C₃ intermediates into the TCA cycle. Enhanced protein abundance of F1F0-ATPase and a NADH oxidoreductase subunit suggest increased activity of the respiratory electron transport chain in response to Gln feeding in traps (Fig. 4). As expected, abundance of Gln synthetase protein declined upon Gln feeding. However, the enzymes involved in respiratory Glu degradation and Asn synthesis were not detected by the proteomic analyses applied.

Discussion

The present labeling experiments with ¹³C/¹⁵N-Gln show that carnivorous D. muscipula can use protein of prey, after depolymerization to amino acids in its external stomach, not only as a source of C and N for growth and development, but also as an alternative respiratory substrate (hypotheses 1 and 2 supported). This is indicated in the present study by ¹³C₂ emission, increased levels of intermediate metabolites of this process, and elevated abundance of proteins of respiratory processes upon ¹³C/¹⁵N-Gln feeding of traps. The use of prey-derived amino acids as an alternative respiratory substrate by the Venus flytrap is reminiscent of protein degradation in noncarnivorous plants under conditions of high demand for energy, when carbohydrates...
are scarce (Araujo et al., 2011). This is frequently observed under stress, but also during germination and senescence (Watanabe et al., 2013; Galili et al., 2014), despite reduced efficiency of respiratory protein catabolism compared to respiration of carbohydrate. This reduced efficiency is indicated by the respiratory quotients of 0.8–0.9 for protein compared to 1.0 for

Fig. 4 Normalized protein abundances of selected proteins in fed (light green), unfed (dark green) and control (gray) Dionaea traps. Mean values of three biological replicates are shown ± SD. Asterisks indicate significant (P < 0.05) differences after one-way ANOVA. Numbers within the bars indicate the numbers of unique peptides identified. Top row, proteins involved in protein synthesis; middle row, proteins involved in respiration; bottom row, other proteins. NA, not available.
carbohydrate (Plaxton & Podesta, 2006). However, in *D. muscipula* the use of amino-acid-derived C for respiration is transient and most significant during the initial 25 h of secretion of the prey-decomposing fluid, since 13CO$_2$ emission had already started to decline during the 46 h of Gln feeding, even though the respiratory substrate from prey in the glands was not limiting. This view is consistent with previous studies showing that rates of respiration of *D. muscipula* were increased upon prey capture, but only during the initial period of digestion (Pavlovic et al., 2010; Kruse et al., 2014). Apparently, the high energy demand of production and secretion of the prey-decomposing fluid cannot be met by *D. muscipula*’s own resources. The present experiments show that prey-induced enhanced respiration is achieved in *D. muscipula* by both channeling amino-acid-derived C from prey into the TCA cycle and by elevating the abundance of proteins of respiratory electron transport.

The present metabolome data provide evidence for the pathways responsible for channeling Gln-C into the TCA cycle. As expected, Gln feeding caused elevated levels of this amino acid in fed traps and leaves attached to these traps (Fig. 3). Part of the Gln fed was apparently taken up without previous degradation in the prey-decomposing fluid. Surprisingly, the level of Glu, the initial degradation product of Gln, as well as Glu degradation products such as succinate, were not enhanced in traps fed Gln. However, also Gln feeding of tobacco leaf discs did not enhance Glu (Masciaux-Daubresse et al., 2005; Forde & Lea, 2007), but rather 2-oxoglutarate abundance (Schneidereit et al., 2006). These findings fit very well with the present results (Fig. 3), indicating that (1) Gln feeding accelerates Glu turnover at a similar extent as Glu formation from Gln and (2) Gln was initially deaminated to Glu and, subsequently, further degraded to the TCA cycle intermediate 2-oxoglutarate. This second step of Gln degradation can be catalyzed by Glu dehydrogenase and/or several aminotransferases (Figs 3, S1). The involvement of aminotransferase activity in Gln degradation is indicated in the present study by enhanced abundances of Ala as well as Ile and Val in Gln-fed traps. Ala may be produced from Glu by alanine aminotransferase activity, and Ile and Val by Gln-stimulated branched-chain amino acid synthesis (Joshi et al., 2010; Galili et al., 2016). In addition, Ile biosynthesis is linked via Asp to the synthesis of threonine (Thr) that can act as a precursor of Ile (Jander & Joshi, 2009). The two-fold enhanced Thr level in Gln-fed traps of *Dionaea* supports the view of a contribution of this pathway to the elevated Ile level (Table S1). Since Ile and Val can be degraded to succinyl coenzyme A (CoA) and acetyl CoA, which are precursors of TCA cycle intermediates and can directly be used as electron donors of mitochondrial respiration (reviewed by Galili et al., 2016), the enhanced formation of these amino acids in Gln-fed traps are supposed to be linked to respiratory energy formation. It may also be assumed that Glu decarboxylase contributes to Glu degradation in Gln-fed traps of *Dionaea* (Fig. S1). However, we did not find any hints that the GABA shunt is stimulated in response to Gln feeding (Table S1).

Gln feeding of traps did not result in enhanced transcription of enzymes involved in respiratory Gln degradation (Figs S1, S2). Apparently, constitutive expression of these enzymes is sufficient to channel prey-derived Gln-C into respiratory degradation via the TCA cycle. This result is surprising, because amino acid catabolism in noncarnivorous plants is under transcriptional control (Hildebrandt et al., 2015). Whether respiratory Gln degradation in *Dionaea* traps requires enhanced protein abundance or is under biochemical control by metabolic effectors, feedback regulation and post-translational modification, as shown for leaf respiration of noncarnivorous plants (Tcherkez et al., 2012), remains to be elucidated. In the present study, the abundance of the enzymes involved in respiratory Gln degradation could not be detected among the 450 proteins found in traps by the proteomic analysis applied. This is possibly due to the high content of secondary metabolites, which may have suppressed the detection of a significant number of peptides. In this context, it is interesting that a number of ribosomal proteins were increased in abundance in fed traps compared to unfed traps and traps of control plants. A higher content of ribosomal proteins can be associated with higher activity in protein synthesis and growth. In *Arabidopsis*, the occupancy of ribosomes in polysomes underlies diurnal dynamics with high content of polysomes during photosynthetic carbon assimilation in the light (Piques et al., 2009). Similarly, fed traps could have increased resources for protein synthesis and, therefore, afford the investment into higher ribosomal protein content, in order to facilitate degradation of prey and the acquisition of prey-derived resources. These results are well in line with recent studies on transcriptome adjustments in active *Dionaea* traps (Bemm et al., 2016). While the pronounced expansion of rough endoplasmatic reticulum in the outer layer of the secretory gland complexes already points to highly active protein synthesis and translocation, insect-fed traps were also considerably enriched in transcripts of ribosomal protein synthesis (Bemm et al., 2016).

The total amount of label acquisition from 13C/15N-Gln by the traps differed between C and N. From this it is concluded that at least part of the N in the Gln fed is already separated from its C skeleton in the decomposing fluid secreted by the gland cells of the traps (hypothesis 1 supported). Further separation of Gln-N and Gln-C will take place during respiratory decomposition. This conclusion is supported by different allocation of Gln-N and Gln-C into nonfed organs of trap-fed plants. Among these organs, nonfed traps were a stronger sink for Gln-derived C compared to N, supporting the view of poor photosynthetic CO$_2$ fixation capacity of trap tissue (e.g. Kruse et al., 2014). By contrast, roots were a stronger sink for Gln-derived N compared to C, confirming low N acquisition by *D. muscipula* roots due to low nutrient availability in the soil substrate (Gao et al., 2015). Thus, resources of prey caught by individual traps are distributed within the entire plant, depending on the particular needs of each organ.

The marked increase in respiratory 13CO$_2$ release from labeled traps resulted in a clear increase in the 13CO$_2$ concentration in the cuvettes (Fig. 2a), which may have been taken up via photosynthetic CO$_2$ fixation. To estimate the effect of potential 13C labeling via photosynthetic uptake of the green leaf tissue, we calculated the maximum potential uptake of 13CO$_2$ taking into account the hours of exposure, the current isotopic composition...
in the chambers, as well as the measured photosynthetic CO$_2$ uptake and isotope discrimination rate of each plant. These calculations suggested that $c. 2.1 \pm 0.7\%$ of the observed ^{13}C may be attributed to photosynthetic refixation. Thus, all additional ^{13}C observed in nonfied tissue of trap-fed plants can only be explained by long-distance transport in phloem and xylem. We propose that the N-rich amino acid Asn, a well-known N-transport form in plants (Fischer et al., 1998; Finnemann & Schjoerring, 1999; Harrison et al., 2000), might fulfill this function (see Fig. S1). Apparently, fed traps support growth and development of nonfied traps in a similar way by long-distance transport in phloem and xylem, as mature leaves can support young developing leaves in noncarnivorous plants (Herschbach et al., 2012).

The present study provides information on the fate of prey-derived Gln-C and Gln-N in different organs of the Venus flytrap under close to steady state conditions, when traps are still in the process of consuming the Gln fed (Figs 1, 2). With the labeling approach applied, the dynamics of the transition of trap metabolism from the beginning of prey exposure to steady state conditions of prey consumption cannot be characterized. During this transition, metabolic changes may be transient and may follow different time courses. To identify these metabolic changes in response to prey exposure, short time pulse labeling at different times of prey exposure and compound-specific stable isotope analyses by GC- and LC-isotope ratio MS (IRMS) appears to be a useful approach, particularly for the quantification of metabolite fluxes. Obviously, this is a study of its own that will be subject of future research.

Acknowledgements

We thank Cornelia Blessing and Carolin Thöm Chair of Tree Physiology, University of Freiburg, for expert technical assistance during IRMS analyses. We extend our sincere appreciation to the Deanship of Scientific Research at King Saud University for funding this Profilic Research Group (PRG-1436-24).

Author contributions

L.F. planned and performed the labeling experiment, and carried out the $^{13}CO_2$ analyses including data handling; D.M. performed the IRMS and metabolome analyses; J.K. contributed to the labeling experiment, analyzed and evaluated the IRMS and metabolome data, and contributed to the writing of the manuscript; I.K. and D.B. performed the transcriptome analyses including data handling and evaluation, and contributed to the writing of the manuscript; W.X.S. performed the proteome analyses including data handling and evaluation, and contributed to the writing of the manuscript; J.K. contributed to the labeling experiment; S.A. and R.H. contributed to the planning of the experiment and the writing of the manuscript; C.W. contributed to the evaluation of the labeling experiment including the $^{13}CO_2$ analyses and the writing of the manuscript; H.R. had the research idea, contributed to the planning of the experiments and wrote most of the manuscript.

References

