The Effects of Enzyme Concentration on the Rate of an Enzyme Catalyzed Reaction.

Enzymology

Principle

- A series of 5-minutes assays, will performed in which a **different enzyme concentration is added** each time the reaction is initiated.
- Provided that substrate remains in excess, the rate of an enzyme catalyzed reaction is **directly proportional to increasing enzyme concentration**.
- This relationship is shown in the figure. The results should indicate the range of enzyme concentrations that yield a linear response

Effects of enzyme conc. on rate of reaction.

The rate of reaction is directly proportional to increasing enzyme concentration

To establish the relationship between enzyme concentration and the rate of an enzyme catalyzed reaction

Materials:

- I.0M Sodium acetate buffer
- 0.1M Magnesium chloride
- 0.05M p-nitrophenyl phosphate
- 0.5M Potassium hydroxide
- Stock solution of crude/ purified wheat germ Acid Phosphatase

Method:

1) Label 7 test tubes (A, B, C, D, E, F, and G) and blank.

2) Pipette the following solutions as indicated in the following table:

Tube no.	Buffer pH 5.7(ml)	MgCl2 (ml)	Substrate (ml)	Dis.Water (ml)
Blank	0.5	0.5	0.5	5.5
А	0.5	0.5	0.5	5.3
В	0.5	0.5	0.5	5.2
С	0.5	0.5	0.5	5.1
D	0.5	0.5	0.5	5.0
Е	0.5	0.5	0.5	4.9
F	0.5	0.5	0.5	4.7
G	0.5	0.5	0.5	4.5

3) Place the tubes in the water bath at 37 °C for 5 minutes.

4) Start the reaction by adding the enzyme at 2 minutes intervals as in the following table:

Tube no.	Enzyme (ml)	Start the reaction (min.) by Enzyme	Stop the reaction (min.) by add KOH 0.5 ml
Blank	0	0 min	0 min
A	0.2	0 min	5 min
В	0.3	2 min	7 min
С	0.4	4 min	9min
D	0.5	6 min	II min
E	0.6	8 min	I3 min
F	0.8	10 min	I5 min
G	I	I2 min	I7 min

5) Stop the reaction by adding 0.5 ml KOH after 5 min. as indicated in the previous table.

6) Read the absorbance at 405 nm against the blank.

esult	Tube no.	Volume of Enzyme (ml)	Absorbanc e at 405nm	Velocity (µ moles of P- NP/minute)
	Blank			
	А			
	В			
	С			
	D			
	Е			
	F			
	G			

-Use the extinction coefficient for p-NP to determine the micromoles of product produced in 5 min at each of the enzyme concentrations.

- Plot velocity against enzyme concentration (units/ml). Describe the shape of this curve and discuss the reasons for its shape.