IE-352
MANUFACTURING PROCESSES - 2

Tool Wear Exercises Answers

Name:	Student Number:
	42

Answer ALL of the following questions [2 Points Each].

1. Let $n=0.5$ and $C=90$ in the Taylor equation for tool wear. What is the percent increase in tool life if the cutting speed is reduced by (a) 50% and (b) 75% ?

Solution:

Taylor Equation for tool life:

$$
\begin{aligned}
& V T^{n}=\boldsymbol{C} \\
& \begin{aligned}
& n=0.5 ; C=90 \\
& \Rightarrow V T^{0.5}=90 \Rightarrow V_{1} T_{1}{ }^{0.5}=V_{2} T_{2}{ }^{0.5} \\
& \text { a) } V_{2}=0.5 V_{1} \\
& \Rightarrow V_{1} T_{1}{ }^{0.5}=0.5 V_{1} T_{2}{ }^{0.5} \\
& \Rightarrow T_{1}{ }^{0.5}=0.5 T_{2}{ }^{0.5} \\
& \Rightarrow\left(\frac{T_{2}}{T_{1}}\right)^{0.5}=2 \\
& \Rightarrow \sqrt{\frac{T_{2}}{T_{1}}}=2 \\
& \Rightarrow \frac{T_{2}}{T_{1}}=4 \\
& \Rightarrow \text { increase in tool life }=\frac{T_{2}-T_{1}}{T_{1}}=\frac{T_{2}}{T_{1}}-1=3 \\
& \Rightarrow \text { i.e. increase in tool life is } 300 \%
\end{aligned}
\end{aligned}
$$

b) $V_{2}=0.25 V_{1}$ (since speed decreases by 75\%)
$\Rightarrow T_{1}{ }^{0.5}=0.25 T_{2}{ }^{0.5}$
$\Rightarrow\left(\frac{T_{2}}{T_{1}}\right)^{0.5}=4$
$\Rightarrow \frac{T_{2}}{T_{1}}=16$

King Saud University - College of Engineering - Industrial Engineering Dept.

$$
\begin{aligned}
& \Rightarrow \text { increase in tool life }=\frac{T_{2}-T_{1}}{T_{1}}=16-1=15 \\
& \Rightarrow \text { i.e. increase in tool life is } \mathbf{1 5 0 0} \%(\text { i.e. } 15-\text { fold })
\end{aligned}
$$

2. For a turning operation using a ceramic cutting tool, if the speed is increased by 50%, by what factor must the feed rate be modified to obtain a constant tool life? Use $n=0.5$ and $y=0.6$.
Given:

$$
\begin{aligned}
& V_{2}=V_{1}+0.5 V_{1}=1.5 V_{1} \\
& T_{2}=T_{1} \\
& n=0.5 ; y=0.6
\end{aligned}
$$

Required: $\frac{f_{2}}{f_{1}}=$?

Solution:

Taylor tool life equation for turning operation:

$$
\begin{aligned}
& V T^{n} d^{x} f^{y}=C_{1} \Rightarrow \\
& V_{1} T_{1}^{n} d_{1}^{x} f_{1}^{y}=V_{2} T_{2}^{n} d_{2}^{x} f_{2}^{y}
\end{aligned}
$$

since $T_{2}=T_{1}$, and assuming constant depth of cut (d) \Rightarrow
$V_{1} f_{1}^{y}=1.5 V_{1} f_{2}^{y} \Rightarrow$
$\left(\frac{f_{2}}{f_{1}}\right)^{0.6}=\frac{1}{1.5} \Rightarrow$
$\frac{f_{2}}{f_{1}}=1.5^{-\frac{1}{0.6}}=0.509$
\Rightarrow feed must be modified by a factor of 50.9\%

