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Freq. domain Gaussian filter:
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H(u)=Ae"'?

H(u)

Gaussian Filtering
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FIGURE 4.37

(a) A 1-D Gaussian
lowpass filter in the
frequency domain.
(b) Spatial

lowpass filter
corresponding to
(a). (c) Gaussian
highpass filter in

" the frequency

domain. (d) Spatial
highpass filter
corresponding to
(c). The small 2-D
masks shown are
spatial filters we
used in Chapter 3.



Low pass Filtering - I

Ideal LPF:

H(u, v) H(u, v)
—= 1

D, =D (u, v)
u

“““ :
i

aaaaaaaa

ab

FIGURE 4.41 (a) Test pattern of size 688 X 688 pixels, and (b) its Fourier spectrum. The
spectrum is double the image size due to padding but is shown in half size so that it fits
in the page. The superimposed circles have radii equal to 10, 30, 60, 160, and 460 with
respect to the full-size spectrum image. These radii enclose 87.0, 93.1, 95.7, 97.8, and
99.2% of the padded image power, respectively.
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FIGURE 4.42 (a) Original image. (b)~(f) Results of filtering using ILPFs with cutoff
frequencies set at radii values 10, 30, 60, 160, and 460, as shown in Fig. 4.41(b). The
power removed by these filters was 13, 6.9, 4.3,2.2, and 0.8% of the total, respectively.



Butterworth LPF

1
~1+[D(u,v)/ D, J*

H(u,v) D,: cutoff freq.

Where, D(u,v)=|u-P/2)?+v-Q/2)2}”

=D (u, v)

abc

FIGURE 4.44 (a) Perspective plot of a Butterworth lowpass-filter transfer function. (b) Filter displayed as an
image. (c) Filter radial cross sections of orders 1 through 4.



Gaussian LPF
H (u,v) = e—Dz(u,v)/2D02

H(u, v) H(u, v)

v 1.0
0.667

/DD:100

D(u, v)

abc

FIGURE 4.47 (a) Perspective plot of a GLPF transfer function. (b) Filter displayed as an image. (c) Filter
radial cross sections for various values of D).

TABLE 4.4
Lowpass filters. D, is the cutoff frequency and » is the order of the Butterworth filter.
Ideal Butterworth Gaussian
1 if D(u, v) = Dy B 1 _ _—DXuv)/2D}
H(u,v) = {O if D(u, v) > Dy H(u,v) = H(u,v) = e

1+ [D(u, v)/Do]*"




High pass Filter - I

H(u, v) H(u, v)

—= 1 1.0+
Ideal .
| D(u, v)
’ Hu,v)
—= 1.0
Butterworth .
| D(u, v)
’ H(u, v)
—= U 1.0
Gaussian
| »D(u, v)

u

FIGURE 4.52 Top row: Perspective plot, image representation, and cross section of a typical ideal highpass
filter. Middle and bottom rows: The same sequence for typical Butterworth and Gaussian highpass filters.



High pass Filter - II

Ideal Butterworth Gaussian

TABLE 4.5
Highpass filters. Dy is the cutoff frequency and 7 is the order of the Butterworth filter.
Ideal Butterworth Gaussian
1 if D(u,v) = D, 1 D(u)2DR
H(u,v) = . H(u,v) = H(u,v) =1 — ¢ Dw2)2Dy
(s v) {0 it D(u,v) > Dy (u,v) 1 + [Dy/D(u, v)]" (u,v)




High pass Filtering & Thresholding

For image enhancement:

abc

FIGURE 4.57 (a) Thumb print. (b) Result of highpass filtering (a). (c¢) Result of
thresholding (b). (Original image courtesy of the U.S. National Institute of Standards

and Technology.)



Band Reject Filter

TABLE 4.6

Bandreject filters. Wis the width of the band, I is the distance D(u, v) from the center of the filter, Dy is the
cutoff frequency. and # is the order of the Butterworth filter. We show D instead of D(u. v) to simplify the
notation in the table.

Ideal Butterworth Gaussian
0 itDy—" =p=py+ " Hv) = : 7
— = = * Fi UZ—U; 2
H(u, v) = 2 2 1+ DW Hu,v)y=1— e o]
1 otherwise D> — D;

Band Reject Band Pass




I'mage Degradation / Restoration

Degradation s Restoration ;
fle,y)=> funglon filter(s) f(x.y)

Noise
‘ n(x,y) ‘
‘ DEGRADATION ‘ RESTORATION ‘
Spatial Domain:  9(X, ) =h(x,y)® f(x,y) +n(x,y)

Freg. Domain: G(u,v)=H(u,v)F(u,v)+ N(u,v)



Noise Models: PDFs

p(z) p(z) p(z)
1 2
0.607 |—
2ma \b K
0.607
vV 2o a(b - .].)b_l —(b-1)
b—-1!
z e
p(z) p(z) (2)
“ I Pyf——————————n
Exponential b—a Uniform Impulse
P,r——-
Z b z a b Z
abc
de £

FIGURE 5.2 Some important probability density functions.

Think about the equations!



Noise Models: Example - I

Gaussian Rayleigh Gamma

al [ Is
de f

FIGURE 5.4 Tmages and histograms resulting from adding Gaussian, Rayleigh, and gamma noise to the image 12
in Fig. 5.3.



oise Models: Example - IT

Exponential Salt & Pepper

B hi
i 1

Zal=a

FIGURE 5.4 (Continued) Images and histograms resulting from adding exponential, uniform, and salt and
pepper noise to the image in Fig.5.3.
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Periodic Noise

Spatially dependent noise — sinusoidal noise

Impulses

a
b

FIGURE 5.5

(a) Image
corrupted by
sinusoidal noise.
(b) Spectium
(each pair of
conjugate
impulses
corresponds to
one sine wave).
(Original image
courtesy of
NASA.)

14



Restoration in Presence of
Noise Only - T

Spatial: g(X’ y) = f (X’ y) + n(X, y)
Frequency: G(u,v)=F(u,v)+ N(u,v)

Arithmetic Mean Filter:

Fa

Corrupted image
/ P g

= Zg(s t)

MN (s tes,,

Filter size

Geometric Mean Filter: .

f(x y):{ Hg(s,t)}mn

(s,t)eSyy
15



Restoration in Presence of
Noise Only - IT

Harmonic mean filter: ¢ _ mn
(s.nes,, 9(51)

Works well for salt noise, but fails for
pepper noise.

D g(s,1)"

(s,t)eS,y

Contra harmonic mean filter:  f(x,y) =
D> g(s,1)°

(s,t)eSyy
Q: Order of the filter.
Q = 0: arithmetic mean; Q = -1: harmonic mean.

Q = +ve: eliminates pepper noise; Q = -ve: eliminates salt noise.

16



Restoration in Presence of
Noise Only - Example 1

ab
cd

FIGURE 5.7

(a) X-ray image.
(b) Image
corrupted by
additive Gaussian
noise. (c¢) Result
of filtering with
an arithmetic
mean filter of size
3 X 3.(d) Result
of filtering with a
geometric mean
filter of the same
size.

(Original image
courtesy of Mr.
Joseph E.
Pascente, Lixi,
Inc.)

. LT T o e “

 PEREEELET

= i et e

s isiniyind

w5 me et e

17



Restoration in Presence of
Noise Only - Example 2

ab
cd

FIGURE 5.8

(a) Image
corrupted by
pepper noise with
a probability of
0.1. (b) Image
corrupted by salt
noise with the
same probability.
(c) Result of
filtering (a) with a
3 X 3 contra-
harmonic filter of
order 1.5.

(d) Result of
filtering (b) with
Q=-15

Aenda




Contra Harmonic Filter: Q

Effect of wrong sign of Q:

ab

5 o
5 B
FIGURE 5.9 ,3[ w
Results of select- ., -
) ) bk
ing the wrong sign r
in contraharmonic {.
filtering. -
(a) Result of gk
filtering .
Fig. 5.8(a) with a
contraharmonic
filter of size 3 KX 3
and Q = —1.5.
(b) Result of
filtering 5.8(b)
withQ = 1.5.
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Order Statistic Filters

Median filter:  f(x,y) = medlan{g(s t)}

s,t)eSyy

Max and min filter:

i

Midpoint filter:  f(x,y) :E[ max {g(s,t)}+ min {g(s t)}}

(s,t)eS,y

N

Alpha-trimmed mean filter: f(x,y)

> 9,(s1)

mn — d (5.)€S,

Delete the d/2 lowest and the d/2 highest intensity values from g(s,t).

The remaining mn— dpixels are in g(s,t).

20
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FIGURE 5.10

(a) Image
corrupted by salt-
and-pepper noise
with probabilities
P,=P, =01
(b) Result of one
pass with a
median filter of
size 3 X 3.

(c¢) Result of
processing (b)
with this filter.
(d) Result of
processing (¢)
with the same
filter.

Two passes

Median Filters

One pass

Three passes

21
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FIGURE 5.11

(a) Result of
filtering

Fig. 5.8(a) with a
max filter of size
3 % 3. (b) Result
of filtering 5.8(b)
with a min filter
of the same size.

Max & Min Filters

Pepper noise: Max filter

Salt noise: Min filter

=iivivisiy
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Filter Effect on Two Types of Noise

cd
e f

FIGURE 5.12

(a) Image
corrupted

by additive
uniform noise.
(b) Image
additionally
corrupted by
additive salt-and-
pepper noise.
Image (b) filtered
witha 5 X 5;

(c) arithmetic
mean filter;

(d) geometric
mean filter;

(e) median filter;
and (f) alpha-
trimmed mean
filter with d = 5.
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Adaptive Filters

2
O n

[g(x, y)— mL]

f(Xy)=g(x,y)-

2
O L

If noise (overall) variance = 0, return g(X,y).
If local noise variance >> overall noise variance,

return a value close to g(x,y).
If two variances are equal, return local arithmetic

mean.

24
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FIGURE 5.13

(a) Image
corrupted by
additive Gaussian
noise of zero
mean and
variance 1000.

(b) Result of
arithmetic mean
filtering.

(c) Result of
geometric mean
filtering.

(d) Result of
adaptive noise
reduction
filtering. All filters
were of size

7 x7

Adaptive Filters:
Example

Self study:
adaptive
median
filter
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