IE-352

Section 3, CRN: 48706/7/8
Section 4, CRN: 58626/7/8
Second Semester 1438-39 H (Spring-2018) - 4(4,1,2)
"MANUFACTURING PROCESSES - 2"
Sunday, March 11, 2018 (23/06/1439H)
Turning Exercise: Tool Wear ANSWERS

Name:	Student Number:
AHMED M. EL-SHERBEENY, PHD	4

Turning and Tool Wear Exercise

The outside diameter of a cylinder made of titanium alloy is to be turned. The starting diameter $=500 \mathrm{~mm}$ and the length $=1000 \mathrm{~mm}$. Cutting conditions are $f=0.4 \mathrm{~mm} / \mathrm{rev}$ and depth of cut $=3.0 \mathrm{~mm}$. The cut will be made with a tungsten carbide cutting tool whose Taylor tool life parameters are $n=0.23$ and $C=400 \mathrm{~m} / \mathrm{min}$. Compute the cutting speed that will make the tool life equal to the machining time.
Given:

- Workpiece material: titanium alloy
- Turning process
- $D_{o}=500 \mathrm{~mm}$
- $l=1000 \mathrm{~mm}$
- $f=0.4 \mathrm{~mm} / \mathrm{rev}$
- $d=3.0 \mathrm{~mm}$
- Tool material: tungsten carbide
- $n=0.23$
- $C=400 \mathrm{~m} / \mathrm{min}$
- $T=t$ (T : tool life; t : cutting/machining time, aka T_{m})

Required: V, cutting speed

Solution:

- cutting speed, $V=\pi D_{\text {avg }} N$
- Since this is a light cut, we can take V to be $V_{\max }$, i.e. $D_{a v g} \approx D_{o}=500 \mathrm{~mm}$ Otherwise, we can use the following to find $D_{a v g}=\frac{D_{o}+D_{f}}{2}$
D_{f} can be found using: $d=\frac{D_{o}-D_{f}}{2} \Rightarrow 2 d=D_{o}-D_{f}$
$\Rightarrow D_{f}=D_{o}-2 d=500 \mathrm{~mm}-(2 * 3.0 \mathrm{~mm})=494 \mathrm{~mm}$
$\Rightarrow D_{\text {avg }}=\frac{D_{o}+D_{f}}{2}=\frac{500 \mathrm{~mm}+494 \mathrm{~mm}}{2}=497 \mathrm{~mm}$
- We now need to find N

We will take advantage of the relation between t and $N: t=\frac{l}{f N}$
$\Rightarrow N=\frac{l}{f t}$

- We have the values of $l(1000 \mathrm{~mm})$ and $f(0.4 \mathrm{~mm} / \mathrm{rev})$, now need to find t, taking advantage of the given relation $T=t$.

We know from Taylor's Tool Life equation:
$V T^{n}=C$
$\Rightarrow T^{n}=\frac{C}{V}$
$\Rightarrow T=\left(\frac{C}{V}\right)^{1 / n}=\frac{C^{1 / n}}{V^{1 / n}}$
$\Rightarrow t=\frac{C^{1 / n}}{V^{1 / n}}$

- Plugging back in the relation for N :
$\Rightarrow N=\frac{l}{f t}=\frac{l}{f \cdot\left(\frac{C^{1 / n}}{V^{1 / n}}\right)}$
- Plugging this back in the original relation for V :
$V=\pi D_{a v g} N=(\pi)\left(D_{\text {avg }}\right)(N)=(\pi)\left(D_{\text {avg }}\right)\left(\frac{l}{f \cdot\left(\frac{C^{1 / n}}{V^{1 / n}}\right)}\right)$
$V=(\pi)\left(D_{a v g}\right)\left(\frac{l \cdot V^{1 / n}}{f \cdot C^{1 / n}}\right)$
Collecting terms containing V (noting that $\frac{1}{n}>1$) :
$V^{\left(\frac{1}{n}-1\right)}=\frac{\left(f \cdot C^{1 / n}\right)}{(\pi)\left(D_{\text {avg }}\right)(l)}$
Realizing that $\frac{1}{\left(\frac{1}{n}-1\right)}=\frac{1}{\left(\frac{1-n}{n}\right)}=\frac{n}{1-n}$
$\Rightarrow V=\left[\frac{\left(f \cdot C^{1 / n}\right)}{(\pi)\left(D_{\text {avg }}\right)(l)}\right]^{(n / 1-n)}$
Now, we can simply plug the values of all the variables as follows (noting that both C and V have to be in $\mathrm{m} / \mathrm{min}$):
$\Rightarrow V=\left[\frac{\left(0.4 \mathrm{~mm} / \mathrm{rev} \cdot 400^{1 / 0.23}\right)}{(\pi)(500 \mathrm{~mm})(1000 \mathrm{~mm})} \cdot \frac{1000 \mathrm{~mm}}{1 \mathrm{~m}}\right]^{(0.23 / 1-0.23)}$
$\Rightarrow V=202.18 \mathrm{~m} / \mathrm{min}$

$$
V=202.2 \mathrm{~m} / \mathrm{min}
$$

Note, if we had substituted $D_{\text {avg }}$ as 497 mm :
$\Rightarrow V=\left[\frac{\left(0.4 \mathrm{~mm} / \mathrm{rev} \cdot 400^{1 / 0.23}\right)}{(\pi)(497 \mathrm{~mm})(1000 \mathrm{~mm})} \cdot \frac{1000 \mathrm{~mm}}{1 \mathrm{~m}}\right]^{(0.23 / 1-0.23)}$
$\Rightarrow V=202.55 \mathrm{~m} / \mathrm{min}$

$$
V=202.6 \mathrm{~m} / \mathrm{min}
$$

Thus, our assumption in taking $D_{\text {avg }} \approx D_{o}$ was a sound one.

