IE-352

Section 3, CRN: 48706/7/8
Section 4, CRN: 58626/7/8
Second Semester 1438-39 H (Spring-2018) - 4(4,1,2)
"MANUFACTURING PROCESSES - 2"
Saturday, March 10, 2018 (22/06/1439H)
Turning Exercise + ANSWERS

Name:	Student Number:

AHMED M. EL-SHERBEENY, PHD 4

Material-removal Rate and Cutting Force in Turning

A $150-\mathrm{mm}$-long, $12.5-\mathrm{mm}$-diameter 304 stainless steel rod is being reduced in diameter to 12.0 mm by turning on a lathe. The spindle rotates at $N=400 \mathrm{rpm}$, and the tool is travelling at an axial speed of $200 \mathrm{~mm} / \mathrm{min}$. Calculate the following:
a) cutting speed
b) material-removal rate
c) cutting time
d) power dissipated
e) cutting force

Given:

- Workpiece material: 304 stainless steel
- Turning on a lathe process
- $l=150 \mathrm{~mm}$
- $D_{o}=12.5 \mathrm{~mm}$
- $D_{f}=12.0 \mathrm{~mm}$
- $N=400 \mathrm{rev} / \mathrm{min}$
- $v=200 \mathrm{~mm} / \mathrm{min}$ (note this is feed rate, NOT cutting speed, V)

Solution:
a) cutting speed, $V=\pi D_{\text {avg }} N$

$$
\begin{gathered}
D_{\text {avg }}=\frac{D_{o}+D_{f}}{2}=\frac{12.5 \mathrm{~mm}+12.0 \mathrm{~mm}}{2}=12.25 \mathrm{~mm} \\
\Rightarrow V=\pi D_{\text {avg }} N=(\pi \mathrm{rad} / \mathrm{fev})(12.25 \mathrm{~mm})(400 \mathrm{fev} / \mathrm{min}) \\
=15393.80 \mathrm{~mm} / \mathrm{min}
\end{gathered}
$$

$$
V=15.4 \mathrm{~m} / \mathrm{min}
$$

$$
\text { Note, } \begin{aligned}
V_{\max } & =\pi D_{o} N=(\pi \mathrm{rad} / \mathrm{rev})(12.5 \mathrm{~mm})(400 \mathrm{rev} / \mathrm{min}) \\
& =15707.96 \mathrm{~mm} / \mathrm{min}=15.7 \mathrm{~m} / \mathrm{min}
\end{aligned}
$$

b) material-removal rate, $M R R=d f V$

$$
\begin{aligned}
& \text { depth of cut, } d=\frac{D_{o}-D_{f}}{2}=\frac{12.5 \mathrm{~mm}-12.0 \mathrm{~mm}}{2}=0.25 \mathrm{~mm} \\
& \text { feed, } f=\frac{v}{N}=\frac{200 \mathrm{~mm} / \mathrm{min}}{400 \mathrm{rev} / \mathrm{min}}=0.50 \mathrm{~mm} / \mathrm{rev} \\
& \Rightarrow M R R=d f V=(0.25 \mathrm{~mm})(0.50 \mathrm{~mm})(15393.80 \mathrm{~mm} / \mathrm{min}) \\
& \quad=1924.2 \mathrm{~mm}^{3} / \mathrm{min}
\end{aligned}
$$

c) cutting time, $t=\frac{l}{f N}$
length of cut, $l=150 \mathrm{~mm}$
$\Rightarrow t=\frac{l}{f N}=\frac{150 \mathrm{~mm}}{(0.50 \mathrm{~mm} / \mathrm{rev})(400 \mathrm{rev} / \mathrm{min})}=0.75 \mathrm{~min}$ - $t=0.75 \mathrm{~min}=45.0 \mathrm{~s}$
d) power dissipated, Power

Approximate Range of Energy Requirements in Cutting
Operations at the Drive Motor of the Machine Tool
(for Dull Tools, Multiply by 1.25)

remember, $u_{t}=\frac{\text { Power }}{M R R}$
u_{t} can be obtained from specific power table in ch.21, for different workpiece materials

	Specific energy	
Material	$\mathrm{W} \cdot \mathrm{s} / \mathrm{mm}^{3}$	
Aluminum alloys	$0.4-1$	
Cast irons	$1.1-5.4$	
Copper alloys	$1.4-3.2$	
High-temperature alloys	$3.2-8$	
Magnesium alloys	$0.3-0.6$	
Nickel alloys	$4.8-6.7$	
Refractory alloys	$3-9$	
Stainless steels	$2-5$	
Steels	$2-9$	
Titanium alloys	$2-5$	

\Rightarrow for stainless steel, we can use an average value of $4 \mathrm{~W} \cdot \mathrm{~s} / \mathrm{mm}^{3}$

$$
\begin{aligned}
\Rightarrow \text { Power }= & u_{t} \cdot M R R=\left(4 \frac{W \cdot{ }^{\text {s }}}{\mathrm{mm}^{3}}\right) \cdot\left(1924.2 \mathrm{~mm}^{3} / \mathrm{min}\right) *\left(\frac{1 \mathrm{~min}}{60 \text { s }}\right) \\
& =128.28 \mathrm{~W}
\end{aligned}
$$

$$
\text { Power }=128 W
$$

e) cutting force, F_{c}

Remember, Power $=F_{c} \cdot V$
$\Rightarrow F_{c}=\frac{\text { Power }}{V}=\frac{128.28 \mathrm{~N} \cdot \mathrm{~m} / \mathrm{s}}{15.3938 \mathrm{~m} / \mathrm{min}} * \frac{60 \mathrm{~s}}{\min }=500.0 \mathrm{~N}$
$-F_{c}=500 \mathrm{~N}$
Another solution, Power $=$ Torque $\cdot \omega$

$$
\begin{aligned}
\Rightarrow \text { Torque } & =\frac{\text { Power }}{\omega}=\frac{128.28 \mathrm{~W}}{2 \pi \mathrm{~N}}=\frac{128.28 \mathrm{~N} \cdot \mathrm{~m} / \mathrm{s}}{(2 \pi)(400) \mathrm{rad} / \mathrm{min}} * \frac{60 \mathrm{~s}}{\mathrm{~min}} \\
& =3.0625 \mathrm{~N} \cdot \mathrm{~m}
\end{aligned}
$$

Also, Torque $=F_{C} \cdot D_{\text {avg }} / 2$
$\Rightarrow F_{c}=2 \frac{\text { Torque }}{D_{\text {avg }}}=2 \frac{3.0625 \mathrm{~N} \cdot \mathrm{~m}}{12.25 \mathrm{~mm}} * \frac{1000 \mathrm{~mm}}{\mathrm{~m}}=500.0 \mathrm{~N}$

