Tutorial 2

Exercise 1:

- Test if the function reported in the figure below is a probability density function.
- Compute the distribution function and plot it.

Exercise 2:

Suppose the height of clouds above the ground at some location is a Gaussian random variable X with mean and variance equal to 1830 m and 460 m , respectively.

Find the probability that clouds will be higher than 2750 m .

Exercise 3

Plot the binomial density and distribution functions for $N=6$ and $p=0.25$.

Exercise 4

Let us consider a box containing 5 red, 35 green and 60 blue balls. Let us define a discrete random variable X to have values $x_{1}=1, x_{2}=2$, and $x_{3}=3$ when a red or green or blue ball is selected. Determine and plot the probability density and distribution functions.

Exercise 5:

A discrete random variable X have possible values $x_{i}=i^{2}$ with $i=1,2,3$. which occur with probabilities $0.4,0.1$, and 0.5 , respectively.
Find the first and second moments in addition to the variance.

Exercise 6:

The characteristic function for a Gaussian random variable X having mean value of 0 is:

$$
\emptyset_{X}(\omega)=\exp \left(-\sigma_{x}^{2} \omega^{2} / 2\right)
$$

Find the moments of X using $\varphi_{X}(\omega)$.
Exercise 7:
Let X be random variable with probability density function

$$
f_{X}(x)= \begin{cases}\frac{x}{2}, & 0<x \leq 2 \\ 0 & \text { otherwise }\end{cases}
$$

Find the pdf of $Y=T(X)=e^{-X}$.

