Tutorial 3 Multiple Random Variables

Exercise 1

A joint sample space for two R.V X and Y has four elements $(1,1),(2,2),(3,3)$, and $(4,4)$ with probabilities $0.1,0.35,0.05$ and 0.5 respectively.

1. Determine through logic and sketch the distribution function $F_{X, Y}(x, y)$.
2. Find the probability of the event $\{X \leq 2.5, Y \leq 6\}$.
3. Find the probability of the event $\{X \leq 3\}$
4. Find and sketch the marginal distribution functions.

Exercise 2

The joint distribution function for two R.V X and Y is

$$
F_{X, Y}(x, y)=u(x) u(y)\left[1-e^{-a x}-e^{-a y}+e^{-a(x+y)}\right]
$$

Where $\mathrm{u}($.$) is the unit-step function and \mathrm{a}>0$. For $\mathrm{a}=0.5$ find:

1. The probability $P\{X \leq 1, Y \leq 2\}$.
2. The probability $P\{0.5<X<1.5\}$.
3. The probability $P\{-1.5<X \leq 2, \quad 1<Y \leq 3\}$.

Exercise 3

The joint distribution function for two R.V X and Y is

$$
F_{X, Y}(x, y)=u(x) u(y)\left[1-e^{-a x}-e^{-a y}+e^{-a(x+y)}\right]
$$

Find and sketch the marginal distribution functions.

Exercise 4

A fair coin is tossed twice. Define random variables: $X=$ "number of heads on the first toss" and $Y="$ number of heads on the second toss" (note that X and Y can have only the values 0 or 1).
a. Find and sketch the joint density function of X and Y.
b. Find and sketch the joint distribution function.

Exercise 5

A joint probability density function is

$$
f_{X, Y}(x, y)=\left\{\begin{array}{cc}
1 / a b & 0<x<a \text { and } 0<y<b \\
0 & \text { elsewhere }
\end{array}\right.
$$

Find and sketch the joint distribution function $F_{X, Y}(x, y)$.

Exercise 6

A joint probability density function is

$$
f_{X, Y}(x, y)=u(x) u(y) x e^{-x(y+1)}
$$

Find the marginal density functions $f_{X}(x)$ and $f_{Y}(y)$.

Exercise 7

Two random variables X and Y have the joint density function:

$$
f_{X, Y}(x, y)=\left\{\begin{array}{c}
(x+y)^{2} / 40 \\
0 \quad \text { elsewere }
\end{array} \quad-1<x<1, \text { and }-3<y<3\right.
$$

1. Find all the second-order moments of X and Y
2. What are the variances of X and Y
3. What is the correlation coefficient?
4. Find all the third-order moments for X and Y

Exercise 8

For the two random variables X and Y :

$$
\begin{gathered}
f_{X, Y}(x, y)=0.15 \delta(x+1) \delta(y)+0.1 \delta(x) \delta(y)+0.1 \delta(x) \delta(y-2)+0.4 \delta(x-1) \delta(y+2) \\
+0.2 \delta(x-1) \delta(y-1)+0.05 \delta(x-1) \delta(y-3)
\end{gathered}
$$

Find: (a) the correlation; (b) the covariance; (c) the correlation coefficient of X and Y. (d) Are X and Y either uncorrelated or orthogonal.

