Tutorial set #3

Question 1:

Write the Yule-Walker equations for every model of the following, where $\varepsilon_{t\sim}i$. i. $d(0,\sigma_{\varepsilon}^2)$:

1-
$$y_t = 0.5y_{t-1} + \varepsilon_t$$

To find the Yule-Walker equations for the model, we multiply both sides of the equation by y_{t-k} and take expectations:

$$E(y_{t}y_{t-k}) = 0.5 E(y_{t-1}y_{t-k}) + E(\varepsilon_{t}y_{t-k})$$

$$\gamma_{k} = 0.5 \gamma_{k-1} + 0 \qquad \text{(For } k \neq 0\text{)}$$

dividing both sides by γ_0 , we get:

$$\rho_k = 0.5 \; \rho_{k-1}, \;\; k = 1, 2, 3, ...$$

These equations are called Yule-Walker equations, we can use them in finding autocorrelation and partial autocorrelation coefficients of the model.

2-
$$y_t = 1.2 y_{t-1} - 0.7 y_{t-2} + \varepsilon_t$$
 multiply both sides of the equation by y_{t-k} and take expectations:

$$E(y_t y_{t-k}) = 1.2 E(y_{t-1} y_{t-k}) - 0.7 E(y_{t-2} y_{t-k}) + E(\varepsilon_t y_{t-k})$$

$$\gamma_k = 1.2 \gamma_{k-1} - 0.7 \gamma_{k-2} \qquad \text{(For k } \neq 0\text{)}$$

dividing both sides by γ_0 , we get:

$$\rho_k = 1.2 \; \rho_{k-1} - 0.7 \rho_{k-2}, \;\; k = 1, 2, 3, ...$$

3- Find ρ_1 , ρ_2 , ϕ_{kk} for the models in (1) and (2). For model (1): we found the following ACF:

$$\rho_k=0.\,5\,\rho_{k-1},\ k=1,2,3,...$$

Thus:

$$\rho_1 = 0.5\rho_0 = 0.5$$
 $(\rho_0 = 1)$

$$\rho_2 = 0.5\rho_1 = (0.5)(0.5) = 0.25$$

Applying the recurrence relation for finding the PACF:

$$\begin{split} \varphi_{00} &= 1 \quad ; \quad \varphi_{11} = \rho_1 \\ \varphi_{kk} &= \frac{\rho_k - \sum_{j=1}^{k-1} \varphi_{k-1,j} \; \rho_{k-j}}{1 - \sum_{j=1}^{k-1} \varphi_{k-1,j} \; \rho_j} \\ \emptyset_{kj} &= \emptyset_{k-1,j} - \emptyset_{k,k} \emptyset_{k-1,k-j} \quad ; \quad j = 1,2,...,k-1 \end{split}$$

$$\phi_{00} = 1$$

$$\phi_{11} = \rho_1 = 0.5$$

$$\phi_{22} = \frac{\rho_2 - \sum_{j=1}^1 \phi_{1,j} \ \rho_{2-j}}{1 - \sum_{j=1}^1 \phi_{1,j} \ \rho_j} = \frac{\rho_2 - \phi_{11}\rho_1}{1 - \phi_{11}\rho_1}$$

$$= \frac{0.25 - (0.5)(0.5)}{1 - (0.5)(0.5)} = 0$$

we can show that:

$$\phi_{33} = \phi_{44} = \dots = 0$$

For model 2: we found the following ACF:

Thus:
$$\begin{split} \rho_k &= 1.2 \; \rho_{k-1} - 0.7 \rho_{k-2} \; \; ; \quad k = 1,2,3,... \\ \rho_1 &= 1.2 \; \rho_0 - 0.7 \rho_{1-2} \\ &= 1.2 \; - 0.7 \rho_1 \qquad (\rho_{-1} = \rho_1) \\ \rho_1 (1+0.7) &= 1.2 \implies \rho_1 = \frac{1.2}{1.7} = 0.7059 \\ \rho_2 &= 1.2 \; \rho_1 - 0.7 \rho_0 \quad (\rho_0 = 1) \\ &= 1.2 \; \rho_1 - 0.7 = 1.2 (0.7059) - 0.7 = 0.1471 \\ \rho_3 &= 1.2 \; \rho_2 - 0.7 \rho_1 \\ &= 1.2 \; (0.1471) - 0.7 (0.7059) = -0.3176 \end{split}$$

Applying the recurrence relation for finding the PACF:

$$\begin{split} \phi_{00} &= 1 \quad ; \quad \phi_{11} = \rho_1 \\ \phi_{kk} &= \frac{\rho_k - \sum_{j=1}^{k-1} \phi_{k-1,j} \; \rho_{k-j}}{1 - \sum_{j=1}^{k-1} \phi_{k-1,j} \; \rho_j} \\ \emptyset_{kj} &= \emptyset_{k-1,j} - \emptyset_{k,k} \emptyset_{k-1,k-j} \quad ; \quad j = 1,2,\dots,k-1 \end{split}$$

$$\phi_{00} = 1$$

$$\phi_{11} = \rho_{1} = 0.7059$$

$$\phi_{22} = \frac{\rho_{2} - \sum_{j=1}^{1} \phi_{1,j} \ \rho_{2-j}}{1 - \sum_{j=1}^{1} \phi_{1,j} \ \rho_{j}} = \frac{\rho_{2} - \phi_{11}\rho_{1}}{1 - \phi_{11}\rho_{1}} = \frac{0.1471 - (0.7059)(0.7059)}{1 - (0.7059)(0.7059)} = -0.7$$

$$\phi_{33} = \frac{\rho_{3} - \sum_{j=1}^{2} \phi_{2,j} \ \rho_{3-j}}{1 - \sum_{j=1}^{2} \phi_{2,j} \ \rho_{j}} = \frac{\rho_{3} - [\phi_{21}\rho_{2} + \phi_{22}\rho_{1}]}{1 - [\phi_{21}\rho_{1} + \phi_{22}\rho_{2}]}$$

Thus, we notice that we need to find ϕ_{21} :

$$\phi_{21} = \phi_{11} - \phi_{22}\phi_{11} = 0.7059 - (-0.7)(0.7059) = 1.2$$

Hence:

$$\phi_{33} = \frac{-0.1376 - [1.2 (0.1471) + (-0.7)(0.7059)]}{1 - [1.2(0.7059) + (-0.7)(0.1471)]} = 0$$

we can show that:

$$\phi_{44} = \phi_{55} = \dots = 0$$

Question 2:

Find the Yule-Walker equations for the following models and solve these equations to get values for ρ_1 and ρ_2 .

1-
$$y_t - 0.8y_{t-1} = \varepsilon_t$$

$$\mathbf{y_t} = \mathbf{0.8}\mathbf{y_{t-1}} + \boldsymbol{\varepsilon_t}$$

Multiplying both sides by y_{t-k} , and taking the mathematical expectation:

$$E(y_{t} y_{t-k}) = 0.8E(y_{t-1} y_{t-k}) + E(\varepsilon_{t} y_{t-k})$$

$$\Rightarrow \gamma_{k} = 0.8\gamma_{k-1} + E(\varepsilon_{t} y_{t-k})$$

Now notice that Y_{t-k} depends only on ε_{t-k} , ε_{t-k-1} , ..., then:

$$E[\varepsilon_t y_{t-k}] = \begin{cases} \sigma_{\varepsilon}^2, & k = 0\\ 0, & k = 1,2,3 \end{cases}$$

SO,

$$\begin{aligned} \gamma_0 &= 0.8\gamma_{-1} + \sigma_{\varepsilon}^2 \\ &= 0.8\gamma_1 + \sigma_{\varepsilon}^2 \quad ; \quad \mathbf{k} = 0 \\ \gamma_k &= 0.8\gamma_{k-1} \quad ; \quad k > 0 \end{aligned}$$

dividing both sides by γ_0 , from which we can calculate the ACF ρ_k :

$$\rho_k = 0.8 \rho_{k-1}$$
 , $k = 1, 2, ...$

these are the Yule-Walker equations for this model.

For example, for k = 1:

$$\rho_1 = 0.8 \rho_0 = 0.8$$

and for k = 2:

$$\rho_2 = 0.8 \rho_1 \Longrightarrow \rho_2 = 0.8^2 = 0.64$$

2-
$$y_t - 0.9y_{t-1} + 0.4y_{t-2} = \varepsilon_t$$

$$y_t = 0.9y_{t-1} - 0.4y_{t-2} + \varepsilon_t$$

Multiplying both sides by y_{t-k} , and taking the mathematical expectation:

$$\gamma_k = E[y_t y_{t-k}] = 0.9 E[y_{t-1} y_{t-k}] - 0.4 \, E[y_{t-2} y_{t-k}] + E[\varepsilon_t y_{t-k}]$$

and since Y_{t-k} depends only on ε_{t-k} , ε_{t-k-1} , ..., then:

$$E[\varepsilon_t y_{t-k}] = \begin{cases} \sigma_\varepsilon^2 & \text{, k} = 0 \\ 0 & \text{, k} = 1,2,3 \end{cases}$$

SO,

$$\gamma_0 = 0.9\gamma_{-1} - 0.4\gamma_{-2} + \sigma_{\varepsilon}^2$$

$$= 0.9\gamma_1 - 0.4\gamma_2 + \sigma_{\varepsilon}^2 \quad ; k = 0$$

$$\gamma_k = 0.9\gamma_{k-1} - 0.4\gamma_{k-2} \quad ; \quad k > 0$$

from which we can calculate the ACF ρ_k :

$$\rho_k = 0.9 \rho_{k-1} - 0.4 \rho_{k-2}$$
 , $k = 1, 2, ...$

these are the Yule-Walker equations for this model.

For example, for k = 1:

$$\rho_1 = 0.9\rho_0 - 0.4\rho_1$$

$$\rho_1(1+0.4) = 0.9 \implies \rho_1 = \frac{0.9}{(1+0.4)} = 0.643$$
 and for $\mathbf{k} = \mathbf{2}$:
$$\rho_2 = 0.9\rho_1 - 0.4\rho_0 \implies \rho_2 = 0.9(0.643) - 0.4 = 0.1787$$

Question 3:

Assume $\varepsilon_{t\sim}i$. i. $d(0,\sigma_{\varepsilon}^2)$, and let the observed series be defined as $y_t = \varepsilon_t - \theta \varepsilon_{t-1}$. Where the parameter θ can take either the value $\theta = 3$ or $\theta = \frac{1}{3}$.

1- Find the autocorrelation function of the series $\{Y_t\}$ for both cases, compare them.

For the model where $\theta = 3$:

Hence, the ACF has the form:

$$\rho_{k} = \frac{\gamma_{k}}{\gamma_{0}} = \begin{cases} 1, & k = 0 \\ -0.3, & k = 1 \\ 0, & k \ge 2 \end{cases}$$

For the model where $\theta = \frac{1}{3}$:

$$E(y_t) = E\left(\epsilon_t - \frac{1}{3}\epsilon_{t-1}\right) = 0$$

$$V(y_t) = V\left(\epsilon_t - \frac{1}{3}\epsilon_{t-1}\right) = \frac{10}{9} \sigma_{\epsilon}^2$$

$$\gamma_k = \text{Cov}\left[\left(\epsilon_t - \frac{1}{3}\epsilon_{t-1}\right), \left(\epsilon_{t-k} - \frac{1}{3}\epsilon_{t-k-1}\right)\right]$$

for k = 1:

$$\gamma_1 = \text{Cov}\left[\left(\epsilon_t - \frac{1}{3}\epsilon_{t-1}\right), \left(\epsilon_{t-1} - \frac{1}{3}\epsilon_{t-2}\right)\right] = -\frac{1}{3} \sigma_\epsilon^2$$

for k = 2:

$$\gamma_2 = \text{Cov}\left[\left(\epsilon_t - \frac{1}{3}\epsilon_{t-1}\right), \left(\epsilon_{t-2} - \frac{1}{3}\epsilon_{t-3}\right)\right] = 0$$

Hence, the ACF has the form:

$$\rho_{k} = \begin{cases} 1, & k = 0 \\ -0.3, & k = 1 \\ 0, & k \ge 2 \end{cases}$$

Thus, we notice that both process has the same ACF!

Question 4: Write the following models using the Backshift operator B:

1-
$$y_t - 0.5 y_{t-1} = \varepsilon_t$$
:

The backshift operator B is $B^r y_t = y_{t-r}$; r = 1, 2, ...

$$(1 - 0.5B) y_t = \varepsilon_t$$

2-
$$y_{t} = \varepsilon_{t} - 1.3 \ \varepsilon_{t-1} + 0.4 \ \varepsilon_{t-2}$$

 $y_{t} = (1 - 1.3 \ B + 0.4B^{2}) \ \varepsilon_{t}$
3- $y_{t} - 0.5 \ y_{t-1} = \varepsilon_{t} - 1.3 \ \varepsilon_{t-1} + 0.4 \ \varepsilon_{t-2}$
 $(1 - 0.5B) \ y_{t} = (1 - 1.3 \ B + 0.4B^{2}) \ \varepsilon_{t}$
4- $y_{t} - 0.2 \ y_{t-2} = \varepsilon_{t} + 1.8 \ \varepsilon_{t-1}$
 $(1 - 0.2B^{2}) \ y_{t} = (1 + 1.8 \ B) \ \varepsilon_{t}$
5- $y_{t} - 0.2 \ y_{t-1} + y_{t-2} = \varepsilon_{t} - 1.7 \ \varepsilon_{t-1} + 0.3 \ \varepsilon_{t-3}$
 $(1 - 0.2B + B^{2}) \ y_{t} = (1 - 1.7 \ B + 0.3B^{3}) \ \varepsilon_{t}$

Question 4:

Express the following models in terms of the process $\{y_t\}$ and $\{\varepsilon_t\}$:

1-
$$\nabla^3 y_t = \nabla \varepsilon_t$$

Difference operator is defined as: $\nabla y_t = y_t - y_{t-1}$

$$\begin{split} \nabla \varepsilon_t &= \varepsilon_t - \varepsilon_{t-1} \, , \\ \nabla^3 y_t &= \nabla \nabla \nabla (y_t) = \nabla \nabla (y_t - y_{t-1}) = \nabla [(y_t - y_{t-1}) - (y_{t-1} - y_{t-2})] \\ &= \nabla (y_t - 2y_{t-1} + y_{t-2}) \\ &= (y_t - 2y_{t-1} + y_{t-2}) - (y_{t-1} - 2y_{t-2} + y_{t-3}) \\ &= (y_t - 3y_{t-1} + 3y_{t-2} - y_{t-3}) \end{split}$$

$$\therefore (y_t - 3y_{t-1} + 3y_{t-2} - y_{t-3}) = \varepsilon_t - \varepsilon_{t-1}$$

2-
$$\nabla^2 \mathbf{y_t} = \nabla^3 \mathbf{\varepsilon_t}$$

Same as above

3-
$$\nabla y_t = \nabla^2 \varepsilon_t$$

$$y_t - y_{t-1} = \nabla (\varepsilon_t - \varepsilon_{t-1})$$

$$y_t - y_{t-1} = \nabla \varepsilon_t - \nabla \varepsilon_{t-1}$$

$$y_t - y_{t-1} = \varepsilon_t - \varepsilon_{t-1} - \varepsilon_{t-1} + \varepsilon_{t-2}$$

$$y_t - y_{t-1} = \varepsilon_t - 2\varepsilon_{t-1} + \varepsilon_{t-2}$$