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Tutorial set #4 

Question 1: 

The following data represent the monthly sales (in thousand riyals) for a 

particular electrical appliance (read the data across from left to right).  

56 44 42 52 48 66 43 53 

56 38 56 51 54 41 58 44 

60 39 57 34 59 32 52 49 

     43 52 41 

 

1- Plot the data, and comment on the stationarity of the data. 

2- Based on the figure, can you say anything about the approximate value of the 

autocorrelation coefficient ρ1? 

3- Plot yt against yt−1, try to guess the value of ρ1 . 

4- Find and plot the sample autocorrelation function rk for k = 0,1,2,3,4,5. 

Comment on the shape of this function. 

5- Find and plot the sample partial autocorrelation function rkk for k = 0,1,2,3,4,5. 

Comment on the shape of this function. 
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R Code 
#Tutorial4_Q1 
rm(list = ls()) #removes all objects from the current workspace (R memory) 
data1 <- read.delim("C:/STAT 336-Time Series Analysis/data_tutorial4.txt",
header = TRUE) 
#install.packages("astsa")  
library(astsa)   
Y <- ts(data1$Y) #this makes sure R knows that x is a time series. 
 
summary(Y) 
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max.  
  32.00   42.50   51.00   48.89   56.00   66.00  

 
#plotting time series of Y with points marked as "o" (part 1) 
tsplot(Y, type="b",col=4,lwd=2)  

 

1- From the figure, it appears that the data are stationary in the mean, as there do not 

seem to be a clear trend component in the data. Also, the variance seems to be constant 
over the time, hence, the series seem to be stationary. 

 
2- As we see from the plot of the series, most of the time there exist a value above the mean followed 

by a value beneath the mean and so on. Thus, we expect that the value of ρ1 to be negative, however 

its exact value is difficult to guess from the figure, but we don’t expect that it will be a high value (i.e. 

near to one) because the fluctuations are not the same across the series. 

 

#Plot x versus lag 1 of x (part 2) 
lag1.plot(Y,1,col=4,pch=20, cex=1)   
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3- As we see from the plot, the behavior we anticipated for the relation between any two observations 

that are one time apart is clear. As we notice the negative correlation between the observations, as the 

regression line between yt and yt−1 is decreasing. We can estimate visually the value of ρ1 (which is 

the slope of the line) maybe between -0.6 and -0.7. 

 

# ACF & PACF (part 4 & 5) 
acf(Y,lag.max = 10, plot = TRUE,ylim=c(-1,1),ci.type = "ma") 

#The confidence interval plotted in plot.acf is based on an uncorrelated s
eries and should be treated with appropriate caution. Using ci.type ="ma". 

 

4- Where we got the SACF for the data for any time lags, we notice here that �̂�1 = 𝑟1 = −0.68117 , 

we also notice that the autocorrelation decrease as time lag increase (this is a characteristic of the 

stationary processes). Notice also that all values of 𝑟k after the first time lag lie within the 95% C.I , 

we thus can test the hypothesis that all autocorrelation coefficient after time lag 1 are not different 

from zero. 
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pacf(Y,lag.max = 10,plot = TRUE,ylim=c(-1,1))  

 

5- We notice from the figure that only one value  of rkk  is outside the 95% C.I.(cutoff after lag one  ), 

whereas all the rest of the values are within the 95% C.I. which means that they are not significantly 

different from zero. Notice also that r1 = r11 = −0.68117 which is always true.  

 

acf2(Y,max.lag = 10, plot=FALSE) # Value of ACF & PACF 

             ACF        PACF 
 [1,] -0.6811684 -0.68116842 
 [2,]  0.5617521  0.18238796 
 [3,] -0.5468817 -0.21187138 
 [4,]  0.4815203  0.03553379 
 [5,] -0.3726019  0.08128773 
 [6,]  0.2628556 -0.12723856 
 [7,] -0.2164267  0.01697477 
 [8,]  0.2001462  0.05640012 
 [9,] -0.1784259 -0.07046835 
[10,]  0.2122418  0.16324654 
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Question 2:  

In the following cases, comment on the stationarity of the time series, and in case of non-

stationarity, briefly explain how you will deal with the problem: 

1- The following series represent average monthly temperatures for a period of 10 years:  

Index

C
1

12010896847260483624121

28

27

26

25

24

23

Time Series Plot of C1

 

The mean of the series looks constant over time, the same could be said about the variance. Which 

indicate that the series is stationary. Also, notice that the series exhibit a seasonal pattern, where the 

average temperatures decrease for months 6,7 and 8 every year. Whereas the temperatures increase 

gradually for the rest of the year. So, the model we use for the data should incorporate a seasonal 

component and must estimate its coefficients and test their significance. 

 

2- The following series represent monthly numbers (in thousands) of international travelers for 

a period of 10 years: 

Index

C
1

635649423528211471
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Time Series Plot of C1
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It is clear that the series exhibit an increasing trend component and thus the series is not stationary. 

We can deal with the problem of non-stationarity in the mean by applying the difference operator 𝜵, 

so we take the first order difference and inspect the resulting series to see if it succeeded in turning it 

to a stationary series or not, otherwise we can take the second difference. We also notice that the 

variance of the series increases with time, hence it is not stationary in variance as well. We can use 

for example the logarithmic transformation or any other transformation in the Box-Cox family of 

transformations. But be aware that if there is a need to apply both transformations for the data, then 

logarithmic transformation must be applied before the differences. 

3- A time series representing the monthly demand of a particular item: 

Index
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Time Series Plot of C3

 

The series seems to be stationary in the mean, as it does not change over time. There is a slight 

indication of non-stationarity in the variance, we can confirm this by applying the logarithmic 

transformation to the data and study the resulting series.  

4- A time series representing the weekly sales of a large company: 

Index

C
1

0

9080706050403020101

170

160

150

140

130

120

110

100

90

80

Time Series Plot of C10
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It is clear that the series exhibit an increasing trend component and thus the series is not stationary. 

We can deal with the problem of non-stationarity in the mean by applying the difference operator ∇, 

so we take the first order difference and inspect the resulting series to see if it succeeded in turning it 

to a stationary series or not, otherwise we can take the second difference. We do not notice any problem 

of the variance as it seems constant as time increase. 

 

 

Question 3:  

In the general linear process (GLP) , 𝑌t = μY + ∑ ψjεt−j 
∞
j=0 , we used the following ψj  weights: 

1- ψj = ϕj for j=1,2,…  , where |ϕ| < 1. What is the form of the resulting process, and derive its 

autocorrelation function? 

 

  Yt = μY + ∑ ψjεt−j 
∞
j=0  

               = μY + ∑ ϕj∞
j=0 εt−j 

Yt − μY = εt + ϕ εt−1 + ϕ2εt−2 + ϕ3εt−3 + ⋯ 

                        = εt + ϕ [εt−1 + ϕ εt−2 + ϕ2εt−3 + ⋯ ] 
                           = εt + ϕ [Yt−1 − μY] 

Note: This process is called Autoregressive process of order one, since it is a regression of process at 

time t  on its value at time t − 1 .  

The ACF:  

Taking the variance of both sides of the general linear process: 

var(Yt) = γ0 = var (∑ ψjεt−j 

∞

j=0

) = σ2 ∑ ψj
2

∞

j=0

 

Also, finding the autocovariance for the process: 

cov(Yt, Yt−k) = γk = cov (∑ ψjεt−j 

∞

j=0

, ∑ ψj 

∞

j=0

εt−k−j) 

                                                          = cov(∑ ψiεt−i  

k−1

i=0

+ ∑ ψiεt−i  

∞

i=k

, ∑ ψj 

∞

j=0

εt−k−j) 

And to let the summation in the term ∑ ψiεt−i  
∞
i=k  to start from zero, we use the index transformation:      

       let j = i − k  ⇒ i = j + k     

Then, 
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cov(Yt, Yt−k) = cov (∑ ψiεt−i  

k−1

i=0

+ ∑ ψj+kεt−(j+k) 

∞

j=0

, ∑ ψj 

∞

j=0

εt−k−j)         

= cov (∑ ψj+k εt−k−j 

∞

j=0

, ∑ ψj 

∞

j=0

εt−k−j) 

                           = σ2 ∑ ψj ψj+k

∞

j=0

 

 

And hence the ACF for the G.L.P. has the form:  

ρk =
γk

γ0
=

∑ ψj ψj+k
∞
j=0

∑ ψj
2∞

j=0

 

Now, substituting for ψj = ϕj, we get: 

ρk =
∑ ϕjϕj+k∞

j=0

∑ ϕ2j∞
j=0

=
ϕk ∑ ϕ2j∞

j=0

∑ ϕ2j∞
j=0

= ϕk , k = 0,1,2, ..  

Thus, we deduce that the resulting process is an AR(1) process (a special case of the GLP), and it has 

the ability to model data that has the property of autocorrelation that decline in an exponential fashion 

(for 0 < ϕ < 1), or in a declining sine wave fashion if −1 < ϕ < 0. Try using different values for ϕ. 

2- ψ0 = 1, ψ1 = −𝜃 , ψj = 0, for j = 2,3, …, where, |θ| < 1. What is the form of the resulting process, 

and derive its autocorrelation function? 

Yt − μY = ∑ ψjεt−j 

∞

j=0

 

                     = (εt − θεt−1 + 0 ×  εt−2 + 0 × εt−3 + ⋯ ) 

 

              ∴ Yt − μY = εt − θεt−1 

Note: This process is called a moving average of order 1, and it relates the process at time t with the 

errors (or shocks) at time t and time t-1. 

The ACF:  

Substituting for the value ψ0 = 1, ψ1 = −𝜃 and the rest of the weights ψj = 0, j > 1 in the general 

form of the autocorrelation function of the GLP, we get: 

ρk =
∑ ψj ψj+k

∞
j=0

∑ ψj
2∞

j=0

=
ψ0 ψk + ψ1 ψ1+k + ψ2 ψ2+k + ⋯

ψ0
2 + ψ1

2 + ψ2
2 + ⋯

=
ψk + −θψ1+k

1 + 𝜃2  

For k=1: 

∴ ρ1 =
−θ

1 + θ2 

Note that using k=2, then all the terms in the numerator equals zero, this also true for  any value 

 𝐤 ≥ 𝟐. So, we note that the MA(1) process is a special case of the GLP, and it has the ability of 

modeling data that are correlated at one time lag only, and are uncorrelated for data that are further 

apart. 


