PREPARATION OF SOLUTIONS (CONCENTRATIONS)

- 1- The mw of Na₂CO₃ is : Na=23, O=16, C=12
- A) 140
- B) 106
- C) 96
- D) 100
- E) 60

Calculate the pH of a solution containing 0.1 \cdot M Na₂CO₃ and o.2 M NaHCO₃ ? K_{a2} (H₂CO₃) = 4.7 X10⁻¹¹

- A) pH=5
- B) pH = 8
- C) pH=10

Calculate the pH of a solution resulting from adding 4 mL of 0.2 M of NaOH solution to 16 mL of a buffer solution containing 0.1 M CH₃COOH

 $(K_a = 1.8X10^{-5})$ and 0.2 M CH_3COONa

The number of mmol of CH₃COOH

- A) 0.1
- B) 0.8
- C) 1.6

Calculate the pH of a solution resulting from adding 4 mL of 0.2 M of NaOH solution to 16 mL of a buffer solution containing 0.1 M CH₃COOH

 $(K_a = 1.8X10^{-5})$ and 0.2 M CH_3COONa

The number of mmol of NaOH

- A) 0.4
- B) 0.8
- C) 1.6

Calculate the pH of a solution resulting from adding 4 mL of 0.2 M of NaOH solution to 16 mL of a buffer solution containing 0.1 M CH₃COOH

 $(K_a = 1.8X10^{-5})$ and 0.2 M CH_3COONa

The number of mmol of CH₃COONa

- A) 0.4
- B) 0.8
- C) 1.6

- 2- How many grams of Na_2CO_3 in 3 moles, (mw = 106)
- A) 318
- B) 0.028
- C) 134
- D) 201
- E) 67

- 3- Calculate the normal concentration (N) of 0.1 M solution of HCl
- A) 0.2 N
- B) 0.3 N
- C) 0.05 N
- D) 0.1 N

- 4- The eq.wt of H_3PO_4 (mw=98) is:
- A) 98
- B) 49
- C) 32.7
- D) 196
- E) 294

5- 2.5 g of Na₂SO₄ (mw = 106) has been dissolved in water and the volume was completed to 500 mL, calculate the followings :

The molar concentration of Na₂SO₄

- A) 5
- B) 500
- C) 0.5
- D) 0.05

Unit3: STOICHIOMETRY AND EQUILIBRIUM

The limiting reactant is:

- A) present in lower of moles
- B) present in higherof moles
- C) present in lower of mass
- D) present in lower of mass

Unit3: STOICHIOMETRY AND EQUILIBRIUM

The limiting reactant is:

- A) It is comletly used up in the reaction
- B) It is not comletly used up in the reaction

Unit3: STOICHIOMETRY AND EQUILIBRIUM

In chemical equilibrium:

- A) rate (forward= reverse)
- B) rate (forward< reverse)
- C) rate (forward> reverse)

pH of strong acide and base:

A)
$$pH = -\log[H^+]$$

B)
$$pH = -log\sqrt{K_a C_a}$$

C)
$$pH = -log\sqrt{K_b C_b}$$

pH of weak acide:

A)
$$pH = -\log[H^+]$$

B)
$$pOH = -\log[OH^-]$$

C)
$$pH = -log\sqrt{K_a C_a}$$

pH of weak base:

A)
$$pH = -\log[H^+]$$

B)
$$pH = -log\sqrt{K_a C_a}$$

C)
$$pH = -log\sqrt{K_b C_b}$$

```
K_w:
A) K_w = [H^+] + [OH^-]
B) K_w = [H^+] [OH^-]
C) K_w = [H^+] - [OH^-]
D) K_w = \frac{[H^+]}{[OH^-]}
```

pK_w

- A) $pK_w = [H^+][OH^-]$
- B) $pK_w = [H^+] + [OH^-]$
- C) $pK_w = pH + pOH$
- D) $pK_w = pH pOH$

Calculate the pH of. 0.5 M solution of NH_4Cl ? Kb (NH_3) = 1.75 X 10^{-5}

$$pH = -\log[H^+]$$

$$\mathbf{B)} \quad pH = -log\sqrt{K_a C_a}$$

$$\mathbf{C)} \quad pH = -log \sqrt{\frac{K_w C_s}{K_b}}$$

$$pH = -log\sqrt{K_{la} C_s}$$

Calculate the pH of. 0.5 M solution of NH₄Cl ? Kb (NH₃) = 1.75 X 10^{-5}

A)
$$pH = 2.1$$

B)
$$pH = 4.8$$

$$C)$$
 pH= 7

D)
$$pH = 9.6$$

Calculate the pH of 0.2 M solution of Ba(OH)2

A)
$$pOH = 12.1$$

B)
$$pOH = 8.9$$

C)
$$pOH = 5.5$$

D)
$$pOH = 0.4$$

Calculate the pH of 0.2 M solution of Ba(OH)2 •

- A) 9.6
- B) 11.6
- C) 13.6