Tutorial 1

Exercise 1:

Specify the following sets by the rule method. $A = \{1, 2, 3\}, B = \{8, 10, 12, 14\}, C = \{1, 3, 5, 7, ...\}$

Exercise 2:

State every subset of the set of letters $\{a, b, c, d\}$.

Exercise 3

Two sets are given by $A = \{-6, -4, -0.5, 0, 1.6, 8\}$ and $B = \{-0.5, 0, 1, 2, 4\}$. Find:

- (a) A B
- (b) B A
- $(c) \, \pmb{A} \cup \pmb{B}$
- $(d) A \cap B$
- (e) $\overline{\mathbf{A}} \cap B$

Exercise 4

Sketch a Venn diagram for three events where: $A \cap B \neq \phi$, $B \cap C \neq \phi$, $C \cap A \neq \phi$ but $A \cap B \cap C = \phi$

Exercise 5

An experiment has a sample space with 10 equally likely elements $S = \{a_1, a_2, ..., a_{10}\}$. The events are defined as $A = \{a_1, a_5, a_9\}$, $B = \{a_1, a_2, a_6, a_9\}$ and $C = \{a_6, a_9\}$. Find the probability of:

- $(a) \, \pmb{A} \cup \pmb{C}$
- $(b) A \overline{C}$
- $(c) \mathbf{A} \cap (\mathbf{B} \cup \mathbf{C})$
- (*d*) $\overline{\boldsymbol{A} \cup \boldsymbol{B}}$
- $(e) (\boldsymbol{A} \cup \boldsymbol{B}) \cap \boldsymbol{C}$

Exercise 6

An experiment consists of rolling a single die. Two events are defined as: $A = \{ 6 \text{ shows up } \}$ and $B = \{ 2 \text{ or } 5 \text{ shows up } \}$. (*a*) Find P(A) and P(B). (*b*) Define a third event *C* that P(C) = 1 - P(A) - P(B)

Exercise 7

In a box there are 500 colored balls: 75 black, 150 green, 175 red, 70 white and 30 blue. What are the probabilities of selecting ball of each color?

Exercise 8

In three boxes there are capacitors as shown in the next Table. An experiment consist first randomly selecting a box, assuming each has the same likelihood of selection, and then selecting a capacitor from the chosen box.

(a) What is the probability of selecting a 0.01uF capacitor, given that box 2 is selected?

(b) If a 0.01uF capacitor is selected, what is the probability it came from box 3?

	Nui	Number in Box		
Value (uF)	1	2	3	Totals
0.01	20	95	25	140
0.1	55	35	75	165
1.0	70	80	145	295
Totals	145	210	245	600

Exercise 9

A missile can be accidentally launched if two relays A and B both have failed. The probabilities of A and B failing are known to be 0.01 and 0.03 respectively. It is also known that B is more likely to fail (probability 0.06) if A has failed.

(a) What is the probability of an accidental missile launch?

(b) What is the probability that A will fail if B has failed?

(c) Are the events "A fails" and "B fails" statistically independent?

Exercise 10

Given that two events A_1 and A_2 are statistically independent, show that:

(a) A_1 is independent of \overline{A}_2

(b) \overline{A}_1 is independent of A_2

(c) \bar{A}_1 is independent of \bar{A}_2