

College of Computer and Information Sciences Department of Computer Science

**CSC 220: Computer Organization** 

# Unit 10 Arithmetic-logic units

XOR gates let us selectively complement the B input.

$$X \oplus 0 = X$$
  $X \oplus 1 = X'$ 

- When Sub = 0, the XOR gates output B3 B2 B1 B0 and the carry in is 0. The adder output will be A + B + 0, or just A + B.
- When Sub = 1, the XOR gates output B3' B2' B1' B0' and the carry in is 1. Thus, the adder output will be a two's complement subtraction, A - B.



- An arithmetic-logic unit, or ALU, performs many different arithmetic and logic operations. The ALU is the "heart" of a processor—you could say that everything else in the CPU is there to support the ALU.
- Here's the plan:
  - We'll show an arithmetic unit first, by building off ideas from the adder-subtractor circuit.
  - Then we'll talk about logic operations a bit, and build a logic unit.
  - Finally, we put these pieces together using multiplexers.
- We show the same examples as from the book.

• The basic four-bit adder *always* computes S = A + B + CI.



- But by changing what goes into the adder inputs A, B and CI, we can change the adder output S.
- This is also what we did to build the combined adder-subtractor circuit.

#### It's the adder-subtractor again!

- Here the signal Sub and some XOR gates alter the adder inputs.
  - When Sub = 0, the adder inputs A, B, CI are Y, X, 0, so the adder produces G = X + Y + 0, or just X + Y.
  - When Sub = 1, the adder inputs are Y', X and 1, so the adder output is G = X + Y' + 1, or the two's complement operation X Y.



#### The multi-talented adder

- So we have one adder performing two separate functions.
- "Sub" acts like a function select input which determines whether the circuit performs addition or subtraction.
- Circuit-wise, all "Sub" does is modify the adder's inputs A and CI.



## Modifying the adder inputs

- By following the same approach, we can use an adder to compute *other* functions as well.
- We just have to figure out which functions we want, and then put the right circuitry into the "Input Logic" box .



#### Some more possible functions

- We already saw how to set adder inputs A, B and CI to compute either X + Y or X Y.
- How can we produce the <u>increment function</u> G = X + 1?

One way: Set A = 0000, B = X, and CI = 1



This is almost the same as the increment function!

## The role of CI

- The transfer and increment operations have the same A and B inputs, and differ only in the CI input.
- In general we can get additional functions (not all of them useful) by using both CI = 0 and CI = 1.
- Another example:
  - <u>Two's-complement subtraction</u> is obtained by setting A = Y', B = X, and CI = 1, so G = X + Y' + 1.
  - If we keep A = Y' and B = X, but set CI to 0, we get G = X + Y'.
    This turns out to be a ones' complement subtraction operation.



## **Table of arithmetic functions**

- Here are some of the different possible arithmetic operations.
- We'll need some way to specify which function we're interested in, so we've *randomly assigned* a selection code to each operation.

| <b>S</b> 2 | $S_1$ | $S_0$ | Arith                     | nmetic operation |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|------------|-------|-------|---------------------------|------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0          | 0     | 0     | х                         | (transfer)       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 0          | 0     | 1     | <b>X</b> + 1              | (increment)      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 0          | 1     | 0     | Х+У                       | (add)            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 0          | 1     | 1     | <b>X</b> + <b>Y</b> + 1   |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 1          | 0     | 0     | Х + У'                    | (1C subtraction) |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 1          | 0     | 1     | <b>X</b> + <b>Y</b> ' + 1 | (2C subtraction) | Cout<br>X3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 1          | 1     | 0     | <b>X</b> - 1              | (decrement)      | X1      B1      G3        X0      S2      G2        A3      S1      G1        A2      S0      G0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 1          | 1     | 1     | x                         | (transfer)       | Y3 -<br>Y2 -<br>Y1 -<br>Y0 - Input Logic -<br>Y3 -<br>CI -<br>CI -<br>CI -<br>CI -<br>Y2 -<br>Y0 |
|            |       |       | 7                         |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |

s 并

# Mapping the table to an adder

• This second table shows what the adder's inputs should be for each of our eight desired arithmetic operations.

| Selection code        |                       | Desired arithmetic operation |            | Required adder inputs |      |   |    | B1<br>B2<br>B1<br>B0<br>S3<br>C3<br>C3<br>C3<br>C3<br>C3<br>C3<br>C3<br>C3<br>C3<br>C3<br>C3<br>C3<br>C3 |                            |
|-----------------------|-----------------------|------------------------------|------------|-----------------------|------|---|----|----------------------------------------------------------------------------------------------------------|----------------------------|
| <b>S</b> <sub>2</sub> | <b>S</b> <sub>1</sub> | <b>S</b> <sub>0</sub>        | G          | (A + B + CI)          | A    | В | CI | /3<br>/2<br>/1 Input Logic                                                                               | A2 S0 GU<br>A1<br>A0<br>CI |
| 0                     | 0                     | 0                            | Х          | (transfer)            | 0000 | Х | 0  |                                                                                                          |                            |
| 0                     | 0                     | 1                            | X + 1      | (increment)           | 0000 | X | 1  | s –                                                                                                      |                            |
| 0                     | 1                     | 0                            | X + Y      | (add)                 | У    | Х | 0  |                                                                                                          |                            |
| 0                     | 1                     | 1                            | X + Y + 1  |                       | У    | Х | 1  |                                                                                                          |                            |
| 1                     | 0                     | 0                            | X + Y'     | (1C subtraction)      | У'   | Х | 0  |                                                                                                          |                            |
| 1                     | 0                     | 1                            | X + Y' + 1 | (2C subtraction)      | У'   | Х | 1  |                                                                                                          |                            |
| 1                     | 1                     | 0                            | X - 1      | (decrement)           | 1111 | X | 0  |                                                                                                          |                            |
| 1                     | 1                     | 1                            | Х          | (transfer)            | 1111 | Х | 1  |                                                                                                          |                            |

- Adder input CI is always the same as selection code bit  $S_{0}$ .
- <u>B is always set to X.</u>
- <u>A depends only on S<sub>2</sub> and S<sub>1</sub></u>.
- These equations depend on both the desired operations and the assignment of selection codes.

CO

# **Building the input logic**

- All we need to do is compute the adder input A, given the arithmetic unit input Y and the function select code S (actually just S<sub>2</sub> and S<sub>1</sub>).
- Here is an abbreviated truth table:



• We want to pick one of these four possible values for A, depending on S<sub>2</sub> and S<sub>1</sub>.

# **Primitive gate-based input logic**

- We could build this circuit using primitive gates.
- If we want to use K-maps for simplification, then we should first expand out the abbreviated truth table.
  - The Y that appears in the output column (A) is actually an input.
  - We make that explicit in the table on the right.
- Remember A and Y are each 4 bits long!



| <b>S</b> <sub>2</sub> | <b>S</b> <sub>1</sub> | A    |
|-----------------------|-----------------------|------|
| 0                     | 0                     | 0000 |
| 0                     | 1                     | У    |
| 1                     | 0                     | У'   |
| 1                     | 1                     | 1111 |

## **Primitive gate implementation**

• From the truth table, we can find an MSP:



$$\mathbf{A}_{i} = \mathbf{S}_{2}\mathbf{Y}_{i}' + \mathbf{S}_{1}\mathbf{Y}_{i}$$

- Again, we have to repeat this once for each bit Y3-Y0, connecting to the adder inputs A3-A0.
- This completes our arithmetic unit.



| Selection code |       |       | Desired arithmetic operation |                  | Require | Required adder inputs |     |  |
|----------------|-------|-------|------------------------------|------------------|---------|-----------------------|-----|--|
| S <sub>2</sub> | $S_1$ | $S_0$ | D =                          | X + Y + Cin      | X       | Y                     | Cin |  |
| 0              | 0     | 0     | Α                            | (transfer)       | 0000    | X                     | 0   |  |
| 0              | 0     | 1     | A+ 1                         | (increment)      | 0000    | X                     | 1   |  |
| 0              | 1     | 0     | A+B                          | (add)            | В       | Х                     | 0   |  |
| 0              | 1     | 1     | A+B+1                        |                  | B       | X                     | 1   |  |
| 1              | 0     | 0     | A+B                          | (1C subtraction) | B       | Х                     | 0   |  |
| 1              | 0     | 1     | A+B+1                        | (2C subtraction) | B       | X                     | 1   |  |
| 1              | 1     | 0     | A-1                          | (decrement)      | 1111    | Х                     | 0   |  |
| 1              | 1     | 1     | Α                            | (transfer)       | 1111    | Х                     | 1   |  |



| <b>S</b> <sub>2</sub> | $S_1$ | У    |
|-----------------------|-------|------|
| 0                     | 0     | 0000 |
| 0                     | 1     | в    |
| 1                     | 0     | В'   |
| 1                     | 1     | 1111 |

- Most computers also support logical operations like AND, OR and NOT, but extended to multi-bit words instead of just single bits.
- To apply a logical operation to two words X and Y, apply the operation on each pair of bits X<sub>i</sub> and Y<sub>i</sub>:

|     | 1011    |    | 1011    |     | 1011    |
|-----|---------|----|---------|-----|---------|
| AND | 1 1 1 0 | OR | 1 1 1 0 | XOR | 1 1 1 0 |
|     | 1010    |    | 1 1 1 1 |     | 0101    |

• We've already seen this informally in two's-complement arithmetic, when we talked about "complementing" all the bits in a number.

#### **Bitwise operations in programming**

- Languages like C, C++ and Java provide bitwise logical operations:
  & (AND) | (OR) ^ (XOR) ~ (NOT)
- These operations treat each integer as a bunch of individual bits:

13 & 25 = 9 because 01101 & 11001 = 01001

• They are *not* the same as the operators &&, || and !, which treat each integer as a single logical value (0 is false, everything else is true):

**13 && 25 = 1** because true **&&** true **=** true

- Bitwise operators are often used in programs to set a bunch of Boolean options, or flags, with one argument.
- Easy to represent sets of fixed universe size with bits:
  - 1: is member, 0 not a member. Unions: OR, Intersections: AND

# **Defining a logic unit**

- A logic unit supports different logical functions on two multi-bit inputs X and Y, producing an output G.
- This abbreviated table shows four possible functions and assigns a selection code S to each.

| <b>S</b> <sub>1</sub> | <b>S</b> <sub>0</sub> | Output                                                  |
|-----------------------|-----------------------|---------------------------------------------------------|
| 0                     | 0                     | $G_i = X_i Y_i$                                         |
| 0                     | 1                     | $G_i = X_i + Y_i$                                       |
| 1                     | 0                     | $\mathbf{G}_{i} = \mathbf{X}_{i} \oplus \mathbf{Y}_{i}$ |
| 1                     | 1                     | <i>G</i> <sub>i</sub> = X <sub>i</sub> '                |



- We'll just use multiplexers and some primitive gates to implement this.
- Again, we need one multiplexer for *each bit* of X and Y.

# Our simple logic unit

- Inputs:
  - X (4 bits)
  - Y (4 bits)
  - S (2 bits)
- Outputs:
  - G (4 bits)









## **Combining the arithmetic and logic units**

- Now we have two pieces of the puzzle:
  - An arithmetic unit that can compute eight functions on 4-bit inputs.
  - A logic unit that can perform four functions on 4-bit inputs.
- We can combine these together into a single circuit, an arithmetic-logic unit (ALU).

## **Our ALU function table**

- This table shows a sample function table for an ALU.
- All of the arithmetic operations have  $S_3=0$ , and all of the logical operations have  $S_3=1$ .
- These are the same functions we saw when we built our arithmetic and logic units a few minutes ago.
- Since our ALU only has 4 logical operations, we don't need S<sub>2</sub>.
  The operation done by the logic unit depends only on S<sub>1</sub> and S<sub>0</sub>.

| <b>S</b> <sub>3</sub> | <b>S</b> <sub>2</sub> | <b>S</b> <sub>1</sub> | <b>S</b> <sub>0</sub> | Operation      |
|-----------------------|-----------------------|-----------------------|-----------------------|----------------|
| 0                     | 0                     | 0                     | 0                     | G = X          |
| 0                     | 0                     | 0                     | 1                     | G = X + 1      |
| 0                     | 0                     | 1                     | 0                     | G = X + Y      |
| 0                     | 0                     | 1                     | 1                     | G = X + Y + 1  |
| 0                     | 1                     | 0                     | 0                     | G = X + Y'     |
| 0                     | 1                     | 0                     | 1                     | G = X + Y' + 1 |
| 0                     | 1                     | 1                     | 0                     | G = X - 1      |
| 0                     | 1                     | 1                     | 1                     | G = X          |
| 1                     | ×                     | 0                     | 0                     | G = X and Y    |
| 1                     | X                     | 0                     | 1                     | G = X or Y     |
| 1                     | X                     | 1                     | 0                     | G = X ⊕ Y      |
| 1                     | X                     | 1                     | 1                     | G = X'         |

# A complete ALU circuit

The / and 4 on a line indicate that it's actually four lines.



#### **Comments on the multiplexer**

- *Both* the arithmetic unit and the logic unit are "active" and produce outputs.
  - The mux determines whether the final result comes from the arithmetic or logic unit.
  - The output of the other one is effectively ignored.
- Our hardware scheme may seem like wasted effort, but it's not really.
  - "Deactivating" one or the other wouldn't save that much time.
  - We have to build hardware for both units anyway, so we might as well run them together.
- This is a very common use of multiplexers in logic design.

#### The completed ALU

- This ALU is a good example of hierarchical design.
  - With the 12 inputs, the truth table would have had  $2^{12} = 4096$  lines. That's an awful lot of paper.
  - Instead, we were able to use components that we've seen before to construct the entire circuit from a couple of easy-to-understand components.
- As always, we encapsulate the complete circuit in a "black box" so we can reuse it in fancier circuits.

