agosacllioll
Hing Saud University

College of Computer and Information Sciences
Department of Computer Science

CSC 220: Computer Organization

Unit 10
Arithmetic-logic units

Remember: An adder-subtractor circuit

= XOR gates let us selectively complement the B input.
AE0=X el =x

* When 5ub =0, the XOR gates output B3 B2 B1 B0 and the carry inis 0. The
adder output will be A + B + 0, or just A + B.

* When S5ub =1, the XOR gates output B3" BZ2' B1° BO" and the carry inis 1.
Thus, the adder output will be a two's complement subtraction, A - B.

B3 A3 B2 A2 BO
ITI I‘I \/ I’I
I I
I

¥ X
C cn oot cinC2dcot cinF<'dcow cin
s 5 s S

I I I I
GO 53 52 31 S0

B1 A1
= Sub

A0
I
X

Arithmetic-logic units

* An arithmetic-logic unit, or ALU, performs many
different arithmetic and logic operations. The
ALU is the “heart” of a processor—you could say
that everything else in the CPU is there to support
the ALU.

* Here’s the plan:

— We’ll show an arithmetic unit first, by building off ideas from the
adder-subtractor circuit.

— Then we’ll talk about logic operations a bit, and build a logic unit.
— Finally, we put these pieces together using multiplexers.

* \We show the same examples as from the book.

The four-bit adder

* The basic four-bit adder a/wayscomputes S =A + B + CI.

CO
— B3
— B2
— B1
— BO S3—
S2—
— A3 S1—
— A2 S0—
— Al
— AD
Cl

* But by changing what goes into the adder inputs A, B and CI, we can
change the adder output S.

* This is also what we did to build the combined adder-subtractor
circuit.

It’s the adder-subtractor again!

* Here the signal Sub and some XOR gates alter the adder inputs.
— When Sub =0, the adder inputs A, B, Cl are Y, X, 0, so the adder
producesG=X+Y +0,orjust X +Y.

— When Sub = 1, the adder inputs are Y’, X and 1, so the adder
outputis G=X+ Y’ + 1, or the two’s complement operation X - Y.

| . Cout
CO
X3 B3
X2 B2
X1 B1
X0 BO S3 G3
S2 G2
i}) 1 A3 S1 G1
% A2 S0 GO
) oA
Y2
8

YO . *—
-\\"'
»

Sub

The multi-talented adder

* So we have one adder performing two separate functions.

* “Sub” acts like a function select input which determines whether the
circuit performs addition or subtraction.

* Circuit-wise, all “Sub” does is modify the adder’s inputs A and CI.

| ., Cout
CcO
53 G3
52 G2
S1 G1
S0 GO0
Cl

Modifying the adder inputs

By following the same approach, we can use an adder to compute other
functions as well.

We just have to figure out which functions we want, and then put the
right circuitry into the “Input Logic” box .

| , Cout
CO
X3 B3
X2 B2
X1 B1
X0 BO 53 G3
52 G2
A3 S1 G1
A2 S0 GO0
- Al
Y2 — cl
Y1 — :
Yo — Input Logic

I

Some more possible functions

X+YorX-Y.

m==) One way: Set A = 0000, B = X, and CI = 1

e How about decrement: G =X -1?

A=1111 (-1) B=X, ¢cI =20

e How about transfer: G = X?
(This can be useful.)

) 4 - 0000 B=X CIL=0

This Is almost the same as the
increment function!

* How can we produce the increment function G = X + 1?

* We already saw how to set adder inputs A, B and CI to compute either

|— Cout

B RS ES

3 —
Y2 —
Y1 —

5 =
|

Input Logic

B3
B2
B1
B0

Al

o

o3 =3
o2 =2
=1 1
=] =0

l

mas

The role of CI

The transfer and increment operations have the same A and B inputs,
and differ only in the CI input.

In general we can get additional functions (not all of them useful) by
using both CI =0and CI =1.

Another example:
— Two’s-complement subtraction is obtained by setting A=Y’, B =
X,and Cl=1,s0G=X+Y"+1.

— Ifwekeep A=Y and B=X,butsetClto0,wegetG=X+Y".
This turns out to be a ones’ complement subtraction operation.

|—< Cout
Co
3 B3
2 B2
1 B
X0 B0 S3 G3
52 (52
A3 5 G
A2 50 GO
¥3 — Al
¥2 — ol

1 — i
v | lnput Lagic

mas

Table of arithmetic functions

Here are some of the different possible arithmetic operations.

We’ll need some way to specify which function we’re interested in, so
we’ve randomly assigned a selection code to each operation.

Sz S1 S Arithmetic operation

0 0 0 | X (transfer)

0 0 1 | X+1 (increment)

1 0 [X+Y (add)

0 1 1 [X+Y +1

1 0 O | X+Y (1C subtraction)

1 0 1 | X+¥Y'+1 (2C subtraction) o

1 1 0 | X-1 (decrement) :

1 1 1 | X (transfer) E— j

10

Mapping the table to an adder

* This second table shows what the adder’s inputs should be for each of
our eight desired arithmetic operations.

X3

®2

o

Selection code | Desired arithmetic operation | Required adder inputs "
S; 51 S G (A + B+ CT) A B CI 33 . _
0 0| 0 [x (transfer) 0000 | X 0o |
O 0 1 | X+1 (increment) 0000 X 1
0 1 0O |X+Y (add) Y X o)
0] 1 1 [X+Y+1 Y X 1
1 0) O [X+YVY (1C subtraction) Y X 0
1 0 1 |X+Y'+1 (2C subtraction) VA X 1
1 1 O [X-1 (decrement) 1111 X 0
1 1 1 |X (transfer) 1111 X 1

— Adder input C1 is always the same as selection code bit S,.
— B is always set to X.
— A depends only on S, and S,.

* These equations depend on both the desired operations and the
assignment of selection codes.

Building the input logic

* All we need to do is compute the adder input A, given the arithmetic
unit input Y and the function select code S (actually just S, and S,).

* Hereis an abbreviated truth table:

S, S yi A | Cout
0 0 oo = 0y OC
0O 0 1fof o2
S: 51 |A o 1 ofof ™ 0 53 3
0] 0] 0000 0] 1 1 1 A3 51 gé
o 1 |y 1 0 of1] ,o o S0
: 1 0 1|0 v2- A
1 0 4 1 1 0 1 35: Input Logic =
1 1 1111
O S U I U R
51—
=0 —

* We want to pick one of these four possible values for A, depending on
S, and S;.

Primitive gate-based input logic

* We could build this circuit using primitive gates.

* |f we want to use K-maps for simplification, then we should first
expand out the abbreviated truth table.

— The Y that appears in the output column (A) is actually an input.
— We make that explicit in the table on the right.
* Remember A and Y are each 4 bits long!

inputs output
S S1 Yi| A
O O 010
O O 1160
s, S |A O 1 010
0 0 |o000 0O 1 1]1
o 1 ly ’ 1 0 Of1
1 0o |V 1 0 1]0
1 1 1111 1 1 0|1
1 1 111

Primitive gate implementation

* Again, we have to repeat this

* From the truth table, we can Cout
find an MSP: L
#3— B3
w2— B2
S =1— B1
1 3 *1— BO i =
oTo o o =y
S, 1110 1 1 _—ﬁﬂ
Yi ¥2 q
1 20
A; =S¥/ + S1Y, W‘L% %

once for each bit Y3-YO0, s .
connecting to the adder inputs
A3-A0. !

® This completes our arithmetic 5251
unit.

14

Selection code

Desired arithmetic operation

Required adder inputs

Sz 51 So D=-=X+Y + Cin X Y Cin
0 0 o0 |A (transfer) 0000 X 0
0 0 1 |A+1 (increment) 0000 X 1
0 1 © |A+B (add) B X 0
o0 1 1 |[A+B+1 B X 1
1 0 0 |A+R (ICsubtraction) |B X 0
1 0 1 |A+ BH+ 1 (2C subtraction) B" X 1
1 1 0 |A-1 (decrement) 1111 X 0
1 1 1]A (transfer) 1111 X 1

15

S
L |
Qo o
|G 00O S
NIO - O —
i
NIOC O — —
a) <))
41 S y ¥y & iy) g
] - # =
oF e i e i i v N
%5 ot -m lm
b4 b =
o+ = - = wr =
- ™ &4 - ™]
B O = mom Vi © =mom L I - B e I~
o < & < & < LY < o

Bitwise operations

Most computers also support logical operations like AND, OR and
NOT, but extended to multi-bit words instead of just single bits.

To apply a logical operation to two words X and Y, apply the operation
on each pair of bits X; and Y:

1011 1011 1011
AND 1110 OR 1110 XOR 1110
1010 1111 0101

We’ve already seen this informally in two’s-complement arithmetic,
when we talked about “complementing” all the bits in a number.

17

Bitwise operations in programming

* Languages like C, C++ and Java provide bitwise logical operations:
& (AND) | (OR) N (XOR) ~ (NOT)

* These operations treat each integer as a bunch of individual bits:
13&25=9 because 01101 & 11001 = 01001

* They are notthe same as the operators &&, || and !, which treat each
Integer as a single logical value (0O is false, everything else is true):

13&&25=1 because true && true = true

* Bitwise operators are often used in programs to set a bunch of Boolean
options, or flags, with one argument.

* [Easy to represent sets of fixed universe size with bits:
— 1:is member, 0 not a member. Unions: OR, Intersections: AND

18

Defining a logic unit

A logic unit supports different logical
functions on two multi-bit inputs X and
Y, producing an output G.

This abbreviated table shows four
possible functions and assigns a selection
code S to each.

Si So OUTPUT

0] 0] Gi = Xiyi

0 1 Gg = Xi + y,-
1 O G,‘ - Xi @ yi
1 1 Gi = Xi'

We’ll just use multiplexers and some
primitive gates to implement this.

Again, we need one multiplexer for each
bitof Xand Y.

EM

51
S0

L3
D
L1
DO

19

Inputs:

— X (4 bits)
— Y (4 bits)
— S (2 bits)

Outputs:

— G (4 bits)

EN

31
11

3

L1
Bl

%3 —]
Y3 —
"o
=1 —
=0 —
m [

EN

31
1l

3

[l
o]l

W —

—52

Our simple logic unit

EN

3l
al

L3

[l
Bl

w1 —

¥ —
Ip—o
=1 —
=0 —

}::]] [

EN

3l
&l

L3

[l
Ml

—51

—50

20

Combining the arithmetic and logic units

Now we have two pieces of the puzzle:

— An arithmetic unit that can compute eight functions on 4-bit
Inputs.
— A logic unit that can perform four functions on 4-bit inputs.

We can combine these together into a single circuit, an arithmetic-logic
unit (ALU).

21

Our ALU function table

This table shows a sample
function table for an ALU.

All of the arithmetic operations
have S;=0, and all of the logical
operations have S;=1.

These are the same functions we
saw when we built our arithmetic
and logic units a few minutes ago.

Since our ALU only has 4 logical
operations, we don’t need S.,.
The operation done by the logic
unit depends only on S; and S,,.

S3

S

S1

So

Operation

_ = =, =, OO0 00 00O0O0

@)

X X X X = 00O

_ =, 0O 0 R P00~ ~O0OO

_ O, O, OO OO

G=X
G=X+1
G=X+Y
G=X+Y+1
G=X+YVY
G=X+Y+1
G=X-1
G=X

G =Xand Y
G=XorY
G=X®Y
G=X

22

A complete ALU circuit

The / and 4 on a line indicate that it's actually four lines.

" i/ 0 Cout
LAY At atic Cout shou!d be ignqred
7 Unit when logic operations are
- . performed (when S3=1).
S1 » 4
/
52
52 #/— oo
4 Huad 4
// D1 fﬁt? 47 °
Lagic — = G is the final ALU output.
Uit * When S3 = 0, the final
output comes from the
arithmetic unit.

* When S3 =1, the
output comes from the
logic unit.

The arithmetic and logic units share the select inputs Sl
and SO, but only the arithmetic unit uses S2.

23

Comments on the multiplexer

Both the arithmetic unit and the logic unit are “active” and produce
outputs.

— The mux determines whether the final result comes from the
arithmetic or logic unit.

— The output of the other one is effectively ignored.

Our hardware scheme may seem like wasted effort, but it’s not really.

— “Deactivating’ one or the other wouldn’t save that much time.

— We have to build hardware for both units anyway, so we might as
well run them together.

This is a very common use of multiplexers in logic design.

24

The completed ALU

* This ALU is a good example of hierarchical design.

— With the 12 inputs, the truth table would have had 21?2 = 4096 lines.
That’s an awful lot of paper.

— Instead, we were able to use components that we’ve seen before to
construct the entire circuit from a couple of easy-to-understand
components.

* As always, we encapsulate the complete circuit in a “black box™ so we
can reuse it in fancier circuits.

74L X Cout ——
4

—4— Y ALU .
4, G
+#—i S

25

	Slide Number 1
	Slide Number 2
	Arithmetic-logic units
	The four-bit adder
	It’s the adder-subtractor again!
	The multi-talented adder
	Modifying the adder inputs
	Some more possible functions
	The role of CI
	Table of arithmetic functions
	Mapping the table to an adder
	Building the input logic
	Primitive gate-based input logic
	Primitive gate implementation
	Slide Number 15
	Slide Number 16
	Bitwise operations
	Bitwise operations in programming
	Defining a logic unit
	Our simple logic unit
	Combining the arithmetic and logic units
	Our ALU function table
	A complete ALU circuit
	Comments on the multiplexer
	The completed ALU

