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Arithmetic-logic units 

• An arithmetic-logic unit, or ALU, performs many 
different arithmetic and logic operations. The 
ALU is the “heart” of a processor—you could say 
that everything else in the CPU is there to support 
the ALU. 

• Here’s the plan: 
– We’ll show an arithmetic unit first, by building off ideas from the 

adder-subtractor circuit. 
– Then we’ll talk about logic operations a bit, and build a logic unit. 
– Finally, we put these pieces together using multiplexers. 

• We show the same examples as from the book. 
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The four-bit adder 
• The basic four-bit adder always computes S = A + B + CI. 

 
 
 
 
 
 
 
 
 
 

• But by changing what goes into the adder inputs A, B and CI, we can 
change the adder output S. 

• This is also what we did to build the combined adder-subtractor 
circuit. 



5 

It’s the adder-subtractor again! 
• Here the signal Sub and some XOR gates alter the adder inputs. 

– When Sub = 0, the adder inputs A, B, CI are Y, X, 0, so the adder 
produces G = X + Y + 0, or just X + Y. 

– When Sub = 1, the adder inputs are Y’, X and 1, so the adder 
output is  G = X + Y’ + 1, or the two’s complement operation X - Y. 
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The multi-talented adder 
• So we have one adder performing two separate functions. 
• “Sub” acts like a function select input which determines whether the 

circuit performs addition or subtraction. 
• Circuit-wise, all “Sub” does is modify the adder’s inputs A and CI. 
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Modifying the adder inputs 
• By following the same approach, we can use an adder to compute other  

functions as well. 
• We just have to figure out which functions we want, and then put the 

right circuitry into the “Input Logic” box . 
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Some more possible functions 
• We already saw how to set adder inputs A, B and CI to compute either 
 X + Y or X - Y. 
• How can we produce the increment function G = X + 1? 

 
 

• How about decrement: G = X - 1? 

 
 

• How about transfer: G = X? 
 (This can be useful.) 

 
 

 This is almost the same as the 
 increment function! 

One way:  Set A = 0000,  B = X,  and CI = 1  

A = 1 1 1 1  (- 1 ),  B = X,   CI = 0 

A = 0000,  B = X,   CI = 0 
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The role of CI 
• The transfer and increment operations have the same A and B inputs, 

and differ only in the CI input. 
• In general we can get additional functions (not all of them useful) by 

using both CI = 0 and CI = 1. 
• Another example: 

– Two’s-complement subtraction is obtained by setting A = Y’, B = 
X, and CI = 1, so G = X + Y’ + 1. 

– If we keep A = Y’ and B = X, but set CI to 0, we get G = X + Y’. 
This turns out to be a ones’ complement subtraction operation. 
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Table of arithmetic functions 
• Here are some of the different possible arithmetic operations. 
• We’ll need some way to specify which function we’re interested in, so 

we’ve randomly assigned  a selection code to each operation. 
 

       G 
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Mapping the table to an adder 
• This second table shows what the adder’s inputs should be for each of 

our eight desired arithmetic operations. 
 
 
 
 
 
 
 
 
 
– Adder input CI is always the same as selection code bit S0. 
– B is always set to X. 
– A depends only on S2 and S1. 

• These equations depend on both the desired operations and the 
assignment of selection codes. 

Selection code Desired arithmetic operation Required adder inputs
S2 S1 S0 G (A + B + CI) A B CI
0 0 0 X (transfer) 0000 X 0
0 0 1 X + 1 (increment) 0000 X 1
0 1 0 X + Y (add) Y X 0
0 1 1 X + Y + 1 Y X 1
1 0 0 X + Y’ (1C subtraction) Y’ X 0
1 0 1 X + Y’ + 1 (2C subtraction) Y’ X 1
1 1 0 X – 1 (decrement) 1111 X 0
1 1 1 X (transfer) 1111 X 1



12 

Building the input logic 
• All we need to do is compute the adder input A, given the arithmetic 

unit input Y and the function select code S (actually just S2 and S1). 
• Here is an abbreviated truth table: 

 
 
 
 
 
 
 
 
 
 

• We want to pick one of these four possible values for A, depending on 
S2 and S1. 

S2 S1 A
0 0 0000
0 1 Y
1 0 Y’
1 1 1111

S2 S1 Yi Ai

0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 1
1 0 1 0
1 1 0 1
1 1 1 1

inputs output 
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Primitive gate-based input logic 
• We could build this circuit using primitive gates. 
• If we want to use K-maps for simplification, then we should first 

expand out the abbreviated truth table. 
– The Y that appears in the output column (A) is actually an input. 
– We make that explicit in the table on the right. 

• Remember A and Y are each 4 bits long!  
 

S2 S1 A
0 0 0000
0 1 Y
1 0 Y’
1 1 1111

S2 S1 Yi Ai

0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 1
1 0 1 0
1 1 0 1
1 1 1 1

inputs output 
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Primitive gate implementation 
• From the truth table, we can 

find an MSP: 
 
 
 
 
 
 
 
 

• Again, we have to repeat this 
once for each bit Y3-Y0, 
connecting to the adder inputs 
A3-A0. 
 

• This completes our arithmetic 
unit. 

S1

0 0 1 0
S2 1 0 1 1

Yi

Ai = S2Yi’ + S1Yi 
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Bitwise operations 
• Most computers also support logical operations like AND, OR and 

NOT, but extended to multi-bit words instead of just single bits. 
• To apply a logical operation to two words X and Y, apply the operation 

on each pair of bits Xi and Yi: 
 
 
 
 

• We’ve already seen this informally in two’s-complement arithmetic, 
when we talked about “complementing” all the bits in a number. 

 1 0 1 1 
AND 1 1 1 0 
 1 0 1 0 

 1 0 1 1 
OR 1 1 1 0 
 1 1 1 1 

 1 0 1 1 
XOR 1 1 1 0 
 0 1 0 1 
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• Languages like C, C++ and Java provide bitwise logical operations: 

   & (AND) | (OR) ^ (XOR) ~ (NOT) 

• These operations treat each integer as a bunch of individual bits: 

   13 & 25 = 9  because 01101 & 11001 = 01001 

• They are not the same as the operators &&, || and !, which treat each 
integer as a single logical value (0 is false, everything else is true): 

   13 && 25 = 1  because true && true = true 

• Bitwise operators are often used in programs to set a bunch of Boolean 
options, or flags, with one argument.  

• Easy to represent sets of fixed universe size with bits: 
– 1: is member, 0 not a member. Unions: OR, Intersections: AND 
 

Bitwise operations in programming 
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Defining a logic unit 
• A logic unit supports different logical 

functions on two multi-bit inputs X and 
Y, producing an output G. 

• This abbreviated table shows four 
possible functions and assigns a selection 
code S to each.  
 
 
 
 
 
 

• We’ll just use multiplexers and some 
primitive gates to implement this. 

• Again, we need one multiplexer for each 
bit of X and Y. 

S1 S0 Output 
0 0 Gi = XiYi 
0 1 Gi = Xi + Yi 
1 0 Gi = Xi ⊕ Yi 
1 1 Gi = Xi’ 
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Our simple logic unit 
 
 
 
 

• Inputs: 
– X (4 bits) 
– Y (4 bits) 
– S (2 bits) 

• Outputs: 
– G (4 bits) 
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Combining the arithmetic and logic units 
• Now we have two pieces of the puzzle: 

– An arithmetic unit that can compute eight functions on 4-bit 
inputs.  

– A logic unit that can perform four functions on 4-bit inputs. 
 

• We can combine these together into a single circuit, an arithmetic-logic 
unit (ALU). 
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Our ALU function table 

S3 S2 S1 S0 Operation 
0 0 0 0 G = X 
0 0 0 1 G = X + 1 
0 0 1 0 G = X + Y 
0 0 1 1 G = X + Y + 1 
0 1 0 0 G = X + Y’ 
0 1 0 1 G = X + Y’ + 1 
0 1 1 0 G = X – 1 
0 1 1 1 G = X 
1 x 0 0 G = X and Y 
1 x 0 1 G = X or Y 
1 x 1 0 G = X ⊕ Y 
1 x 1 1 G = X’ 

 

• This table shows a sample 
function table for an ALU. 

• All of the arithmetic operations 
have S3=0, and all of the logical 
operations have S3=1. 

• These are the same functions we 
saw when we built our arithmetic 
and logic units a few minutes ago. 

• Since our ALU only has 4 logical 
operations, we don’t need S2.  
The operation done by the logic 
unit depends only on S1 and S0. 
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A complete ALU circuit 

G is the final ALU output. 
• When S3 = 0, the final 

output comes from the 
arithmetic unit. 

• When S3 = 1, the 
output comes from the 
logic unit. 

Cout should be ignored 
when logic operations are 
performed (when S3=1). 

The arithmetic and logic units share the select inputs S1 
and S0, but only the arithmetic unit uses S2. 

The / and 4 on a line indicate that it’s actually four lines. 
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Comments on the multiplexer 
• Both the arithmetic unit and the logic unit are “active” and produce 

outputs. 
– The mux determines whether the final result comes from the 

arithmetic or logic unit. 
– The output of the other one is effectively ignored. 

• Our hardware scheme may seem like wasted effort, but it’s not really. 
– “Deactivating” one or the other wouldn’t save that much time. 
– We have to build hardware for both units anyway, so we might as 

well run them together. 
• This is a very common use of multiplexers in logic design. 
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The completed ALU 

4 
4 

4 

4 

• This ALU is a good example of hierarchical design.  
– With the 12 inputs, the truth table would have had 212 = 4096 lines.  

That’s an awful lot of paper. 
– Instead, we were able to use components that we’ve seen before to 

construct the entire circuit from a couple of easy-to-understand 
components. 

• As always, we encapsulate the complete circuit in a “black box” so we 
can reuse it in fancier circuits. 
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