College of Computer and Information Sciences
Department of Computer Science

CSC 220: Computer Organization

Unit 10 Arithmetic-logic units

Remember: An adder-subtractor circuit

- XOR gates let us selectively complement the B input.

$$
X \oplus 0=X \quad X \oplus 1=X^{\prime}
$$

- When Sub $=0$, the XOR gates output B3 B2 B1 B0 and the carry in is 0 . The adder output will be $\mathrm{A}+\mathrm{B}+0$, or just $\mathrm{A}+\mathrm{B}$.
- When Sub = 1 , the XOR gates output B3' B2' B1' B0' and the carry in is 1 . Thus, the adder output will be a two's complement subtraction, $\mathrm{A}-\mathrm{B}$.

Arithmetic-logic units

- An arithmetic-logic unit, or ALU, performs many different arithmetic and logic operations. The ALU is the "heart" of a processor-you could say that everything else in the CPU is there to support the ALU.
- Here's the plan:
- We'll show an arithmetic unit first, by building off ideas from the adder-subtractor circuit.
- Then we'll talk about logic operations a bit, and build a logic unit.
- Finally, we put these pieces together using multiplexers.
- We show the same examples as from the book.

The four-bit adder

- The basic four-bit adder always computes S = A + B + CI.

- But by changing what goes into the adder inputs A, B and CI, we can change the adder output S.
- This is also what we did to build the combined adder-subtractor circuit.

It's the adder-subtractor again!

- Here the signal Sub and some XOR gates alter the adder inputs.
- When Sub $=0$, the adder inputs $\mathrm{A}, \mathrm{B}, \mathrm{CI}$ are $\mathbf{Y}, \mathrm{X}, \mathbf{0}$, so the adder produces $\mathbf{G}=\mathbf{X}+\mathbf{Y}+\mathbf{0}$, or just $\mathbf{X}+\mathbf{Y}$.
- When Sub $=1$, the adder inputs are Y^{\prime}, X and 1 , so the adder output is $\mathbf{G}=\mathbf{X}+\mathrm{Y}^{\prime}+1$, or the two's complement operation $\mathrm{X}-\mathrm{Y}$.

The multi-talented adder

- So we have one adder performing two separate functions.
- "Sub" acts like a function select input which determines whether the circuit performs addition or subtraction.
- Circuit-wise, all "Sub" does is modify the adder's inputs A and CI.

Modifying the adder inputs

- By following the same approach, we can use an adder to compute other functions as well.
- We just have to figure out which functions we want, and then put the right circuitry into the "Input Logic" box .

Some more possible functions

- We already saw how to set adder inputs A, B and $C I$ to compute either $\mathbf{X}+\mathbf{Y}$ or $\mathbf{X}-\mathbf{Y}$.
- How can we produce the increment function $G=X+1$?

One way: $\operatorname{Set} A=0000, B=X$, and $C I=1$

- How about decrement: G = X - 1?

$$
A=1111(-1), B=X, C I=0
$$

- How about transfer: G = X? (This can be useful.)
$A=0000, B=X, C I=0$

This is almost the same as the increment function!

The role of CI

- The transfer and increment operations have the same A and B inputs, and differ only in the CI input.
- In general we can get additional functions (not all of them useful) by using both $\mathrm{CI}=0$ and $\mathrm{CI}=1$.
- Another example:
- Two's-complement subtraction is obtained by setting $A=Y$ ', $B=$ X, and $C I=1$, so $G=X+Y^{\prime}+1$.
- If we keep $A=Y^{\prime}$ and $B=X$, but set $C I$ to 0 , we get $G=X+Y^{\prime}$. This turns out to be a ones' complement subtraction operation.

Table of arithmetic functions

- Here are some of the different possible arithmetic operations.
- We'll need some way to specify which function we're interested in, so we've randomly assigned a selection code to each operation.

S_{2}	S_{1}	S_{0}	Arithmetic operation	
0	0	0	X	(transfer)
0	0	1	$X+1$	(increment)
0	1	0	$\mathbf{x}+\mathbf{y}$	(add)
0	1	1	$X+y+1$	
1	0	0	$X+y^{\prime}$	(1C subtraction)
1	0	1	$X+y^{\prime}+1$	(2C subtraction)
1	1	0	$X-1$	(decrement)
1	1	1	X	(transfer)

Mapping the table to an adder

- This second table shows what the adder's inputs should be for each of our eight desired arithmetic operations.

- Adder input CI is always the same as selection code bit S_{0} :
$-B$ is always set to X.
- A depends only on S_{2} and S_{1} :
- These equations depend on both the desired operations and the assignment of selection codes.

Building the input logic

- All we need to do is compute the adder input A, given the arithmetic unit input Y and the function select code S (actually just S_{2} and S_{1}).
- Here is an abbreviated truth table:

inputs output
- We want to pick one of these four possible values for A, depending on S_{2} and S_{1}.

Primitive gate-based input logic

- We could build this circuit using primitive gates.
- If we want to use K-maps for simplification, then we should first expand out the abbreviated truth table.
- The \mathbf{Y} that appears in the output column (A) is actually an input.
- We make that explicit in the table on the right.
- Remember A and Y are each 4 bits long!
inputs
output

S_{2}	S_{1}	A
0	0	0000
0	1	y
1	0	y^{\prime}
1	1	1111

S_{2}	S_{1}	Y_{i}	A_{i}
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	1

Primitive gate implementation

- From the truth table, we can find an MSP:

			S_{1}	
	0	0	1	0
S_{2}	1	0	1	1
		y_{i}		

- Again, we have to repeat this once for each bit Y3-Y0, connecting to the adder inputs A3-A0.
- This completes our arithmetic
 unit.

Selection code			Desired arithmetic operation		Required adder inputs		
S_{2}	S_{1}	S_{0}	$\mathbf{D}=\mathbf{X}+\mathbf{Y}+\mathbf{C i n}$	\mathbf{X}	\mathbf{Y}	Cin	
0	0	0	\mathbf{A}	(transfer)	0000	\mathbf{X}	0
0	0	1	$\mathbf{A}+1$	(increment)	0000	\mathbf{X}	1
0	1	0	$\mathbf{A}+\mathbf{B}$	(add)	\mathbf{B}	\mathbf{X}	0
0	1	1	$\mathbf{A}+\mathbf{B}+1$		\mathbf{B}	\mathbf{X}	1
1	0	0	$\mathbf{A}+\mathbf{B}$	(1C subtraction)	\mathbf{B}	\mathbf{X}	0
1	0	1	$\mathbf{A}+\mathbf{B}+1$	(2C subtraction)	\mathbf{B}	\mathbf{X}	1
1	1	0	$\mathbf{A}-1$	(decrement)	1111	\mathbf{X}	0
1	1	1	\mathbf{A}	(transfer)	1111	\mathbf{X}	1

Bitwise operations

- Most computers also support logical operations like AND, OR and NOT, but extended to multi-bit words instead of just single bits.
- To apply a logical operation to two words X and Y, apply the operation on each pair of bits X_{i} and Y_{i} :
- We've already seen this informally in two's-complement arithmetic, when we talked about "complementing" all the bits in a number.

Bitwise operations in programming

- Languages like C, C++ and Java provide bitwise logical operations:

$$
\&(A N D) \quad \mid(O R) \quad \wedge(X O R) \quad \sim(N O T)
$$

- These operations treat each integer as a bunch of individual bits:

$$
13 \& 25=9 \quad \text { because } \quad 01101 \& 11001=01001
$$

- They are not the same as the operators $\& \&, \|$ and !, which treat each integer as a single logical value (0 is false, everything else is true):
$13 \& \& 25=1 \quad$ because \quad true $\& \&$ true $=$ true
- Bitwise operators are often used in programs to set a bunch of Boolean options, or flags, with one argument.
- Easy to represent sets of fixed universe size with bits:
- 1: is member, 0 not a member. Unions: OR, Intersections: AND

Defining a logic unit

- A logic unit supports different logical functions on two multi-bit inputs X and \mathbf{Y}, producing an output G.
- This abbreviated table shows four possible functions and assigns a selection code S to each.

S_{1}	S_{0}	Output
0	0	$G_{i}=X_{i} Y_{i}$
0	1	$G_{i}=X_{i}+Y_{i}$
1	0	$G_{i}=X_{i} \oplus Y_{i}$
1	1	$G_{i}=X_{i}^{\prime}$

- We'll just use multiplexers and some primitive gates to implement this.
- Again, we need one multiplexer for each bit of X and Y.

Our simple logic unit

- Inputs:
$-X(4$ bits)
$-Y(4$ bits)
- S (2 bits)
- Outputs:
- G (4 bits)

Combining the arithmetic and logic units

- Now we have two pieces of the puzzle:
- An arithmetic unit that can compute eight functions on 4-bit inputs.
- A logic unit that can perform four functions on 4-bit inputs.
- We can combine these together into a single circuit, an arithmetic-logic unit (ALU).

Our ALU function table

- This table shows a sample function table for an ALU.
- All of the arithmetic operations have $S_{3}=0$, and all of the logical operations have $\mathrm{S}_{3}=1$.
- These are the same functions we saw when we built our arithmetic and logic units a few minutes ago.
- Since our ALU only has 4 logical operations, we don't need S_{2}. The operation done by the logic unit depends only on S_{1} and S_{0}.

S_{3}	S_{2}	S_{1}	S_{0}	Operation
0	0	0	0	$G=X$
0	0	0	1	$G=X+1$
0	0	1	0	$G=X+Y$
0	0	1	1	$G=X+Y+1$
0	1	0	0	$G=X+Y^{\prime}$
0	1	0	1	$G=X+Y^{\prime}+1$
0	1	1	0	$G=X-1$
0	1	1	1	$G=X$
1	X	0	0	$G=X$ and Y
1	X	0	1	$G=X$ or Y
1	X	1	0	$G=X \oplus Y$
1	X	1	1	$G=X^{\prime}$

A complete ALU circuit

The / and 4 on a line indicate that it's actually four lines.

The arithmetic and logic units share the select inputs S1 and S0, but only the arithmetic unit uses S2.

Comments on the multiplexer

- Both the arithmetic unit and the logic unit are "active" and produce outputs.
- The mux determines whether the final result comes from the arithmetic or logic unit.
- The output of the other one is effectively ignored.
- Our hardware scheme may seem like wasted effort, but it's not really.
- "Deactivating" one or the other wouldn't save that much time.
- We have to build hardware for both units anyway, so we might as well run them together.
- This is a very common use of multiplexers in logic design.

The completed ALU

- This ALU is a good example of hierarchical design.
- With the 12 inputs, the truth table would have had $2^{12}=4096$ lines. That's an awful lot of paper.
- Instead, we were able to use components that we've seen before to construct the entire circuit from a couple of easy-to-understand components.
- As always, we encapsulate the complete circuit in a "black box" so we can reuse it in fancier circuits.

