
Unit 10
Arithmetic-logic units

1

College of Computer and Information Sciences
Department of Computer Science

 CSC 220: Computer Organization

2

Remember:

3

Arithmetic-logic units

• An arithmetic-logic unit, or ALU, performs many
different arithmetic and logic operations. The
ALU is the “heart” of a processor—you could say
that everything else in the CPU is there to support
the ALU.

• Here’s the plan:
– We’ll show an arithmetic unit first, by building off ideas from the

adder-subtractor circuit.
– Then we’ll talk about logic operations a bit, and build a logic unit.
– Finally, we put these pieces together using multiplexers.

• We show the same examples as from the book.

4

The four-bit adder
• The basic four-bit adder always computes S = A + B + CI.

• But by changing what goes into the adder inputs A, B and CI, we can
change the adder output S.

• This is also what we did to build the combined adder-subtractor
circuit.

5

It’s the adder-subtractor again!
• Here the signal Sub and some XOR gates alter the adder inputs.

– When Sub = 0, the adder inputs A, B, CI are Y, X, 0, so the adder
produces G = X + Y + 0, or just X + Y.

– When Sub = 1, the adder inputs are Y’, X and 1, so the adder
output is G = X + Y’ + 1, or the two’s complement operation X - Y.

6

The multi-talented adder
• So we have one adder performing two separate functions.
• “Sub” acts like a function select input which determines whether the

circuit performs addition or subtraction.
• Circuit-wise, all “Sub” does is modify the adder’s inputs A and CI.

7

Modifying the adder inputs
• By following the same approach, we can use an adder to compute other

functions as well.
• We just have to figure out which functions we want, and then put the

right circuitry into the “Input Logic” box .

8

Some more possible functions
• We already saw how to set adder inputs A, B and CI to compute either
 X + Y or X - Y.
• How can we produce the increment function G = X + 1?

• How about decrement: G = X - 1?

• How about transfer: G = X?
 (This can be useful.)

 This is almost the same as the
 increment function!

One way: Set A = 0000, B = X, and CI = 1

A = 1 1 1 1 (- 1), B = X, CI = 0

A = 0000, B = X, CI = 0

9

The role of CI
• The transfer and increment operations have the same A and B inputs,

and differ only in the CI input.
• In general we can get additional functions (not all of them useful) by

using both CI = 0 and CI = 1.
• Another example:

– Two’s-complement subtraction is obtained by setting A = Y’, B =
X, and CI = 1, so G = X + Y’ + 1.

– If we keep A = Y’ and B = X, but set CI to 0, we get G = X + Y’.
This turns out to be a ones’ complement subtraction operation.

10

Table of arithmetic functions
• Here are some of the different possible arithmetic operations.
• We’ll need some way to specify which function we’re interested in, so

we’ve randomly assigned a selection code to each operation.

 G

11

Mapping the table to an adder
• This second table shows what the adder’s inputs should be for each of

our eight desired arithmetic operations.

– Adder input CI is always the same as selection code bit S0.
– B is always set to X.
– A depends only on S2 and S1.

• These equations depend on both the desired operations and the
assignment of selection codes.

Selection code Desired arithmetic operation Required adder inputs
S2 S1 S0 G (A + B + CI) A B CI
0 0 0 X (transfer) 0000 X 0
0 0 1 X + 1 (increment) 0000 X 1
0 1 0 X + Y (add) Y X 0
0 1 1 X + Y + 1 Y X 1
1 0 0 X + Y’ (1C subtraction) Y’ X 0
1 0 1 X + Y’ + 1 (2C subtraction) Y’ X 1
1 1 0 X – 1 (decrement) 1111 X 0
1 1 1 X (transfer) 1111 X 1

12

Building the input logic
• All we need to do is compute the adder input A, given the arithmetic

unit input Y and the function select code S (actually just S2 and S1).
• Here is an abbreviated truth table:

• We want to pick one of these four possible values for A, depending on
S2 and S1.

S2 S1 A
0 0 0000
0 1 Y
1 0 Y’
1 1 1111

S2 S1 Yi Ai

0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 1
1 0 1 0
1 1 0 1
1 1 1 1

inputs output

13

Primitive gate-based input logic
• We could build this circuit using primitive gates.
• If we want to use K-maps for simplification, then we should first

expand out the abbreviated truth table.
– The Y that appears in the output column (A) is actually an input.
– We make that explicit in the table on the right.

• Remember A and Y are each 4 bits long!

S2 S1 A
0 0 0000
0 1 Y
1 0 Y’
1 1 1111

S2 S1 Yi Ai

0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 1
1 0 1 0
1 1 0 1
1 1 1 1

inputs output

14

Primitive gate implementation
• From the truth table, we can

find an MSP:

• Again, we have to repeat this
once for each bit Y3-Y0,
connecting to the adder inputs
A3-A0.

• This completes our arithmetic
unit.

S1

0 0 1 0
S2 1 0 1 1

Yi

Ai = S2Yi’ + S1Yi

15

16

17

Bitwise operations
• Most computers also support logical operations like AND, OR and

NOT, but extended to multi-bit words instead of just single bits.
• To apply a logical operation to two words X and Y, apply the operation

on each pair of bits Xi and Yi:

• We’ve already seen this informally in two’s-complement arithmetic,
when we talked about “complementing” all the bits in a number.

 1 0 1 1
AND 1 1 1 0
 1 0 1 0

 1 0 1 1
OR 1 1 1 0
 1 1 1 1

 1 0 1 1
XOR 1 1 1 0
 0 1 0 1

18

• Languages like C, C++ and Java provide bitwise logical operations:

 & (AND) | (OR) ^ (XOR) ~ (NOT)

• These operations treat each integer as a bunch of individual bits:

 13 & 25 = 9 because 01101 & 11001 = 01001

• They are not the same as the operators &&, || and !, which treat each
integer as a single logical value (0 is false, everything else is true):

 13 && 25 = 1 because true && true = true

• Bitwise operators are often used in programs to set a bunch of Boolean
options, or flags, with one argument.

• Easy to represent sets of fixed universe size with bits:
– 1: is member, 0 not a member. Unions: OR, Intersections: AND

Bitwise operations in programming

19

Defining a logic unit
• A logic unit supports different logical

functions on two multi-bit inputs X and
Y, producing an output G.

• This abbreviated table shows four
possible functions and assigns a selection
code S to each.

• We’ll just use multiplexers and some
primitive gates to implement this.

• Again, we need one multiplexer for each
bit of X and Y.

S1 S0 Output
0 0 Gi = XiYi
0 1 Gi = Xi + Yi
1 0 Gi = Xi ⊕ Yi
1 1 Gi = Xi’

20

Our simple logic unit

• Inputs:
– X (4 bits)
– Y (4 bits)
– S (2 bits)

• Outputs:
– G (4 bits)

21

Combining the arithmetic and logic units
• Now we have two pieces of the puzzle:

– An arithmetic unit that can compute eight functions on 4-bit
inputs.

– A logic unit that can perform four functions on 4-bit inputs.

• We can combine these together into a single circuit, an arithmetic-logic
unit (ALU).

22

Our ALU function table

S3 S2 S1 S0 Operation
0 0 0 0 G = X
0 0 0 1 G = X + 1
0 0 1 0 G = X + Y
0 0 1 1 G = X + Y + 1
0 1 0 0 G = X + Y’
0 1 0 1 G = X + Y’ + 1
0 1 1 0 G = X – 1
0 1 1 1 G = X
1 x 0 0 G = X and Y
1 x 0 1 G = X or Y
1 x 1 0 G = X ⊕ Y
1 x 1 1 G = X’

• This table shows a sample
function table for an ALU.

• All of the arithmetic operations
have S3=0, and all of the logical
operations have S3=1.

• These are the same functions we
saw when we built our arithmetic
and logic units a few minutes ago.

• Since our ALU only has 4 logical
operations, we don’t need S2.
The operation done by the logic
unit depends only on S1 and S0.

23

 4

 4

 4

 4 4

A complete ALU circuit

G is the final ALU output.
• When S3 = 0, the final

output comes from the
arithmetic unit.

• When S3 = 1, the
output comes from the
logic unit.

Cout should be ignored
when logic operations are
performed (when S3=1).

The arithmetic and logic units share the select inputs S1
and S0, but only the arithmetic unit uses S2.

The / and 4 on a line indicate that it’s actually four lines.

24

Comments on the multiplexer
• Both the arithmetic unit and the logic unit are “active” and produce

outputs.
– The mux determines whether the final result comes from the

arithmetic or logic unit.
– The output of the other one is effectively ignored.

• Our hardware scheme may seem like wasted effort, but it’s not really.
– “Deactivating” one or the other wouldn’t save that much time.
– We have to build hardware for both units anyway, so we might as

well run them together.
• This is a very common use of multiplexers in logic design.

25

The completed ALU

4
4

4

4

• This ALU is a good example of hierarchical design.
– With the 12 inputs, the truth table would have had 212 = 4096 lines.

That’s an awful lot of paper.
– Instead, we were able to use components that we’ve seen before to

construct the entire circuit from a couple of easy-to-understand
components.

• As always, we encapsulate the complete circuit in a “black box” so we
can reuse it in fancier circuits.

	Slide Number 1
	Slide Number 2
	Arithmetic-logic units
	The four-bit adder
	It’s the adder-subtractor again!
	The multi-talented adder
	Modifying the adder inputs
	Some more possible functions
	The role of CI
	Table of arithmetic functions
	Mapping the table to an adder
	Building the input logic
	Primitive gate-based input logic
	Primitive gate implementation
	Slide Number 15
	Slide Number 16
	Bitwise operations
	Bitwise operations in programming
	Defining a logic unit
	Our simple logic unit
	Combining the arithmetic and logic units
	Our ALU function table
	A complete ALU circuit
	Comments on the multiplexer
	The completed ALU

