
1

Unit 11
Basic Computer Organization and Design

College of Computer and Information Sciences
Department of Computer Science

 CSC 220: Computer Organization

2

• For the rest of the semester, we’ll focus on computer
architecture: how to assemble the combinational
and sequential components we’ve studied so far into
a complete computer.

• Today, we’ll start with the datapath, the part of the
central processing unit (CPU) that does the actual
computations.

3

An overview of CPU design
• We can divide the design of our CPU into three parts:

– The datapath does all of the actual data processing.
– An instruction set is the programmer’s interface to CPU.
– A control unit uses the programmer’s instructions to tell the

datapath what to do.

• Today we’ll look in detail at a processor’s datapath.

• An ALU does computations, as we’ve seen before.
– A limited set of registers serves as fast temporary storage.
– A larger, but slower, random-access memory is also available.

4

What’s in a CPU?

• A processor is just one big sequential circuit.

– Some registers are used to store values, which form
the state.

– An ALU performs various operations on the data
stored in the registers.

ALU

Registers

Micro-Ops Transfer
Bus

 A bus consists of a set of parallel data lines
 To transfer data using a bus: connect the output of

the source register to the bus; connect the input of
the target register to the bus; when the clock pulse
arrives, the transfer occurs

6

Bus and Memory transfers

7
The content of register C is placed on the bus, and the content of the bus
is loaded into register A by activating its load control input.

8

Question
A digital computer has a common bus system for 16 registers of
32 bit each. The bus is constructed with multiplexers.
•How many selection inputs are there is each multiplexer?
•What size of multiplexers is needed?
•How many multiplexers are there in the bus?

9

Register files

• Modern processors contain a
number of registers grouped
together in a register file.

• Much like words stored in a
RAM, individual registers are
identified by an address.

• Here is a block symbol for a
 2k x n register file.

– There are 2k registers, so
register addresses are k bits
long.

– Each register holds an n-bit
word, so the data inputs and
outputs are n bits wide.

n n

n

k k

k

D data
Write

D address

A address B address

A data B data

 Register File

D

WR

DA

AA

A B

 BA

10

Accessing the register file
• You can read two registers at

once by supplying the AA and
BA inputs. The data appears
on the A and B outputs.

• You can write to a register by
using the DA and D inputs,
and setting WR = 1.

• These are registers so there
must be a clock signal, even
though we usually don’t show
it in diagrams.
– We can read from the register

file at any time.
– Data is written only on the

positive edge of the clock.

n n

n

k k

k

D data
Write

D address

A address B address

A data B data

 Register File

D

WR

DA

AA

A B

 BA

11

What’s inside the register file
• Here’s a 4 x n register file. (We’ll assume a 2k x n = 4 x

n register file for all our examples.)

n n

n
decoder

Mux

Mux

DA0 & DA1
Select the register
to write in

AA0 & AA1
BA0 & BA1
Select the register
to read from

The n-bit 4-to-1
muxes select
the two register
file outputs A
and B, based on
the inputs AA
and BA.

12

Explaining the register file

• The 2-to-4 decoder selects one of the four registers for
writing. If WR = 1, the decoder will be enabled and one
of the Load signals will be active.

• The n-bit 4-to-1 muxes select the two register file outputs

A and B, based on the inputs AA and BA.

• We need to be able to read two registers at once
because most arithmetic operations require two
operands.

n n

n

13

The all-important ALU
• The main job of a central processing unit is to “process,” or to perform

computations....remember the ALU from way back when?
• We’ll use the following general block symbol for the ALU.

– A and B are two n-bit numeric inputs.
– FS is an m-bit function select code, which picks one of 2m functions.
– The n-bit result is called F.
– Several status bits provide more
 information about the output F:

• V = 1 in case of signed overflow.
• C is the carry out.
• N = 1 if the result is negative.
• Z = 1 if the result is 0.

A B

ALU

F
Z
N
C
V

FS

n n

n

m

14

ALU functions

• For concrete examples, we’ll use
the ALU as it’s presented in
chapter 4.

• The function select code FS is 4
bits long, but there are only 15
different functions here.

• We use an alternative notation for
AND and OR to avoid confusion
with arithmetic operations.

FS Operation
0000 F = A
0001 F = A + 1
0010 F = A + B
0011 F = A + B + 1
0100 F = A + B'
0101 F = A + B' + 1
0110 F = A - 1
0111 F = A
1000 F = A ∧ B (AND)
1001 F = A ∨ B (OR)
1010 F = A ⊕ B (XOR)
1011 F = A'
1100 F = B
1101 F = sr B (shift right)
1110 F = sl B (shift left)

15

My first datapath

• Here is the most basic datapath.
– The ALU’s two data inputs come

from the register file.
– The ALU computes a result, which is

saved back to the registers.

• WR, DA, AA, BA and FS are
control signals. Their values
determine the exact actions taken
by the datapath— which registers
are used and for what operation.

D data
Write

D address

A address B address

A data B data

 Register File

WR

DA

AA BA

A B

ALU

F
Z
N
C
V

FS FS

n

n n

2

2

2

4

16

An example computation
• Let’s look at the proper control

signals for the operation below:

R0 ← R1 + R3

• Set AA = 01 and BA = 11. This
causes the contents of R1 to
appear at A data, and the
contents of R3 to appear at B
data.

• Set the ALU’s function select
input FS = 0010 (A + B).

• Set DA = 00 and WR = 1. On
the next positive clock edge,
the ALU result (R1 + R3) will be
stored in R0.

D data
Write

D address

A address B address

A data B data

 Register File

WR

DA

AA BA

A B

ALU

F
Z
N
C
V

FS FS
 0010

01 11

00

 1

17

Two questions

• Four registers isn’t a lot.
What if we need more
storage?

• Who exactly decides which
registers are read and written
and which ALU function is
executed?

D data
Write

D address

A address B address

A data B data

 Register File

WR

DA

AA BA

A B

ALU

F
Z
N
C
V

FS FS

18

We can access RAM also
• Here’s a way to connect

RAM into our existing
datapath.

• To write to RAM, we must
give an address and a
data value.

• These will come from the
registers. We connect A
data to the memory’s
ADRS input, and B data to
the memory’s DATA input.

• Set MW = 1 to write to the
RAM. (It’s called MW to
distinguish it from the WR
write signal on the register
file.)

D data
 Write
 D address

 A address B address

A data B data

Register File

WR
DA

AA BA

A B

ALU

F
Z
N
C
V
FS

n

Q D1
 D0

 S

 RAM
 ADRS
 DATA
 CS
 WR

OUT

MW
+5V

n
n

n

FS

n
 MD

 1

MW = 1
to write to the RAM

19

Reading from RAM
• To read from RAM, A data must

supply the address.
• Set MW = 0 for reading.
• The incoming data will be sent to

the register file for storage.
• This means that the register file’s

D data input could come from
either the ALU output or the RAM.

• A mux MD selects the source for
the register file.
– When MD = 0, the ALU output

can be stored in the register
file.

– When MD = 1, the RAM output
is sent to the register file
instead.

D data
 Write
 D address

 A address B address

A data B data

Register File

WR
DA

AA BA

A B

ALU

F
Z
N
C
V
FS

n

Q D1
 D0

 S

 RAM
 ADRS
 DATA
 CS
 WR

OUT

MW
+5V

n
n

n

FS

n
 MD

 0

Mux

20

Notes about this setup

• We now have a way to
copy data between our
register file and the RAM.

• Notice that there’s no way
for the ALU to directly
access the memory—RAM
contents must go through
the register file first.

• Here the size of the
memory is limited by the
size of the registers; with
n-bit registers, we can only
use a 2n x n RAM.

D data
 Write
 D address

 A address B address

A data B data

Register File

WR
DA

AA BA

A B

ALU

F
Z
N
C
V
FS

n

Q D1
 D0

 S

 RAM
 ADRS
 DATA
 CS
 WR

OUT

MW
+5V

n
n

n

FS

n
 MD

21

Memory transfer notation

• In our transfer language, the contents at random access
memory address X are denoted M[X]. For example:
– The first word in RAM is M[0].
– If register R1 contains an address, then M[R1] are the

contents of that address.
• The M[] notation is like a pointer dereference operation

in C or C++.

22

Example sequence of operations

• Here is a simple series of register transfer instructions:

 R3 ← M[R0]
 R3 ← R3 + 1
 M[R0] ← R3

• This just increments the contents at address R0 in RAM.
– Again, our ALU only operates on registers, so the RAM

contents must first be loaded into a register, and then
saved back to RAM.

– R0 is the first register in our register file. We’ll assume it
contains a valid memory address.

• How would these instructions execute in our datapath?

M[R0]  M[R0] + 1 =

23

R3 ← M[R0]
• AA should be set to 00, to read

register R0.
• The value in R0 will be sent to

the RAM address input, so
M[R0] appears as the RAM
output OUT.

• MD must be 1, so the RAM
output goes to the register file.

• To store something into R3,
we’ll need to set DA = 11 and
WR = 1.

• MW should be 0, so nothing is
accidentally changed in RAM.

• Here, we did not use the ALU
(FS) or the second register file
output (BA).

 1

 11

 00

 1

 0

D data
 Write
 D address

 A address B address

A data B data

Register File

WR
DA

AA BA

A B

ALU

F
Z
N
C
V
FS

n

Q D1
 D0

 S

 RAM
 ADRS
 DATA
 CS
 WR

OUT

MW
+5V

n
n

n

FS

n
 MD

MW = 1
to write to the RAM

MW = 0
to read from the RAM

24

R3 ← R3 + 1
• AA = 11, so R3 is read from

the register file and sent to
the ALU’s A input.

• FS needs to be 0001 for the
operation A + 1. Then, R3 +
1 appears as the ALU output
F.

• If MD is set to 0, this output
will go back to the register
file.

• To write to R3, we need to
make DA = 11 and WR = 1.

• Again, MW should be 0 so
the RAM isn’t inadvertently
changed.

• We didn’t use BA.

D data
 Write
 D address

 A address B address

A data B data

Register File

WR
DA

AA BA

A B

ALU

F
Z
N
C
V
FS

n

Q D1
 D0

 S

 RAM
 ADRS
 DATA
 CS
 WR

OUT

MW
+5V

n
n

n

FS

n
 MD

 1

 11

 11

 0

 0
 0001

25

M[R0] ← R3

• Finally, we want to store the
contents of R3 into RAM address
R0.

• Remember the RAM address
comes from “A data,” and the
contents come from “B data.”

• So we have to set AA = 00 and BA
= 11. This sends R0 to ADRS, and
R3 to DATA.

• MW must be 1 to write to memory.
• No register updates are needed,

so WR should be 0, and MD and
DA are unused.

• We also didn’t use the ALU, so FS
was ignored.

D data
 Write
 D address

 A address B address

A data B data

Register File

WR
DA

AA BA

A B

ALU

F
Z
N
C
V
FS

n

Q D1
 D0

 S

 RAM
 ADRS
 DATA
 CS
 WR

OUT

MW
+5V

n
n

n

FS

n
 MD

 0

 00

 1

 11

26

Constant in

• One last refinement is
the addition of a
Constant input.

• The modified datapath is
shown on the right, with
one extra control signal
MB.

NOT R0, R1 R0 ← R1’
ADD R3, R3, #1 R3 ← R3 + 1
SUB R1, R2, #5 R1 ← R2 - 5

Q D1
 D0

 S

D data
 Write
 D address

 A address B address

A data B data

Register File

WR
DA

AA BA

 RAM
 ADRS
 DATA
 CS
 WR

OUT

MW
+5V

A B

ALU

F
Z
N
C
V
FS FS

 MD

S D1 D0
 Q

 Constant
 MB

27

Summary

• The datapath is the part of a processor where
computation is done.
– The basic components are an ALU, a register file and

some RAM.
– The ALU does all of the computations, while the

register file and RAM provide storage for the ALU’s
operands and results.

• Various control signals in the datapath govern its
behavior.

• Next week, we’ll see how programmers can give
commands to the processor, and how those commands
are translated in control signals for the datapath.

	Slide Number 1
	Slide Number 2
	An overview of CPU design
	What’s in a CPU?
	Micro-Ops Transfer�Bus
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Register files
	Accessing the register file
	What’s inside the register file
	Explaining the register file
	The all-important ALU
	ALU functions
	My first datapath
	An example computation
	Two questions
	We can access RAM also
	Reading from RAM
	Notes about this setup
	Memory transfer notation
	Example sequence of operations
	R3  M[R0]
	R3  R3 + 1
	M[R0]  R3
	Constant in
	Summary

