
1

Unit 12
CPU programming

College of Computer and Information Sciences
Department of Computer Science

 CSC 220: Computer Organization

2

Instruction set architectures

• Last time we built a simple, but complete, datapath.
• The datapath is ultimately controlled by a programmer, so today we’ll

look at several aspects of this programming in more detail.
– How programs are executed on processors
– An introduction to instruction set architectures
– Example instructions and programs

• Next, we’ll see how programs are encoded in a processor. Following that,
we’ll finish our processor by designing a control unit, which converts our
programs into signals for the datapath.

Programming and CPUs

3

4

Control units
• From these examples, you can see that different actions are

performed when we provide different inputs for the datapath control
signals.

• The second question we had was “Who exactly decides which
registers are read and written and which ALU function is executed?”
– In real computers, the datapath actions are determined by the

program that’s loaded and running.
– A control unit is responsible for generating the correct control

signals for a datapath, based on the program code.
• We’ll talk about programs and control units next week.

5

Programming and CPUs

• Programs written in a high-level
language like C++ must be compiled
to produce an executable program.

• The result is a CPU-specific machine
language program. This can be loaded
into memory and executed by the
processor.

• CS231 focuses on stuff below the
dotted blue line, but machine
language serves as the interface
between hardware and software.

Datapath

High-level program

Executable file

Control words

Compiler

Control Unit
Hardware

Software

6

7

8

Memory

• While memory transfers are similar to
register transfers, we usually identify them
differently. Specifically, memory to register
transfers are called read operations, while
register to memory transfers are called write
operations. Both require specification of the
memory location to be used (which can be
done through a special register or a special
bus) and a storage location which will hold the
result of a read or which holds the data to be
written.

9

• RTL expressions for a Read operation,
assuming the use of an address registers:

• RTL expressions for a Write operation,

assuming use of a data register:

10

• Register to Memory Transfers are denoted using
square brackets surrounding the memory address.
– e.g. DR ← M[AR] (Read operation)
– e.g. M[AR] ← DR (Write operation)

11

Examples of Arithmetic Microoperations

Examples of Logic Microoperations

12

Assembly and machine languages

• Machine language instructions are sequences of bits in a specific order.
• To make things simpler, people typically use assembly language.

– We assign “mnemonic” names to operations and operands.
– There is (almost) a one-to-one correspondence between these

mnemonics and machine instructions, so it is very easy to convert
assembly programs to machine language.

• We’ll use assembly code this today to introduce the basic ideas, and
switch to machine language next time.

13

Data manipulation instructions

• Data manipulation instructions correspond to ALU operations.
• For example, here is a possible addition instruction, and its equivalent

using our register transfer notation:

• This is similar to a high-level programming statement like

R0 = R1 + R2

• Here, all of the operands are registers.

ADD R0, R1, R2

operation

destination sources

operands

R0 ← R1 + R2

Register transfer instruction:

14

More data manipulation instructions

• Here are some other kinds of data manipulation instructions.

 NOT R0, R1 R0 ← R1’
 ADD R3, R3, #1 R3 ← R3 + 1
 SUB R1, R2, #5 R1 ← R2 - 5

• Some instructions, like the NOT, have only one operand.
• In addition to register operands, constant operands like 1 and 5 are also

possible. Constants are denoted with a hash mark in front.

15

Relation to the datapath

• These instructions reflect the design of
our datapath from last week.

• There are at most two source operands
in each instruction, since our ALU has
just two inputs.

• The two sources can be two registers, or
one register and one constant.

• More complex operations like

R0 ← R1 + R2 - 3

 must be broken down into several lower-
level instructions.

• Instructions have just one destination
operand, which must be a register.

D data
 Write
 D address

 A address B address

A data B data

Register File

WR
DA

AA BA

A B

ALU

F
Z
N
C
V
FS FS

S D1 D0
 Q

 Constant
 MB

16

What about RAM?

• Recall that our ALU has
direct access only to the
register file.

• RAM contents must be
copied to the registers
before they can be used as
ALU operands.

• Similarly, ALU results must
go through the registers
before they can be stored
into memory.

• We rely on data movement
instructions to transfer data
between the RAM and the
register file.

D data
 Write
 D address

 A address B address

A data B data

Register File

WR
DA

AA BA

Q D1
 D0

 S

 RAM
 ADRS
 DATA
 CS
 WR

OUT

MW
+5V

A B

ALU

F
Z
N
C
V
FS FS

 MD

S D1 D0
 Q

 Constant
 MB

17

Loading a register from RAM

• A load instruction copies data
from a RAM address to one
of the registers.

 LD R1,(R3) R1 ← M[R3]

• Remember in our datapath,
the RAM address must come
from one of the registers—in
the example above, R3.

• The parentheses help show
which register operand holds
the memory address.

D data
 Write
 D address

 A address B address

A data B data

Register File

WR
DA

AA BA

 RAM
 ADRS
 DATA
 CS
 WR

OUT

MW
+5V

A B

ALU

F
Z
N
C
V
FS FS

 MD

S D1 D0
 Q

 Constant
 MB

Q D1
 D0

 S

18

Storing a register to RAM

• A store instruction copies
data from a register to an
address in RAM.

 ST (R3),R1 M[R3] ← R1

• One register specifies the
RAM address to write to—in
the example above, R3.

• The other operand specifies
the actual data to be stored
into RAM—R1 above.

Q D1
 D0

 S

A B

ALU

F
Z
N
C
V
FS FS

 MD

S D1 D0
 Q

 Constant
 MB

 RAM
 ADRS
 DATA
 CS
 WR

OUT

MW
+5V

D data
 Write
 D address

 A address B address

A data B data

Register File

WR
DA

AA BA

19

Loading a register with a constant

• With our datapath, it’s also
possible to load a constant
into the register file:

 LD R1, #0 R1 ← 0

• Our example ALU has a
“transfer B” operation
(FS=10000) which lets us
pass a constant up to the
register file.

• This gives us an easy way to
initialize registers.

D data
 Write
 D address

 A address B address

A data B data

Register File

WR
DA

AA BA

Q D1
 D0

 S

 RAM
 ADRS
 DATA
 CS
 WR

OUT

MW
+5V

 MD

S D1 D0
 Q

 Constant
 MB

A B

ALU

F
Z
N
C
V
FS FS

20

Storing a constant to RAM

• And you can store a constant
value directly to RAM too:

 ST (R3), #0 M[R3] ← 0

• This provides an easy way to
initialize memory contents.

D data
 Write
 D address

 A address B address

A data B data

Register File

WR
DA

AA BA

Q D1
 D0

 S

A B

ALU

F
Z
N
C
V
FS FS

 MD

S D1 D0
 Q

 Constant
 MB

 RAM
 ADRS
 DATA
 CS
 WR

OUT

MW
+5V

21

The # and () are important!

• We’ve seen several statements containing the # or () symbols.
These are ways of specifying different addressing modes.

• The addressing mode we use determines which data are actually
used as operands:

• The design of our datapath determines which addressing modes
we can use.
– The second example above wouldn’t work in our datapath.

Why not?
• We’ll talk about addressing modes in more detail next lecture.

LD R0, #1000 // R0 ← 1000
LD R0, 1000 // R0 ← M[1000]

LD R3, R0 // R3 ← R0
LD R3, (R0) // R3 ← M[R0]

22

A small example

• Here’s an example register-transfer operation.

M[1000] ← M[1000] + 1

• This is the assembly-language equivalent:

• An awful lot of assembly instructions are needed!
– For instance, we have to load the memory address 1000 into a

register first, and then use that register to access the RAM.
– This is due to our relatively simple datapath design, which only

allows register and constant operands to the ALU.
– Later on, mostly in CS232, you’ll see why this can be a good thing.

LD R0, #1000 // R0 ← 1000
LD R3, (R0) // R3 ← M[1000]
ADD R3, R3, #1 // R3 ← R3 + 1
ST (R0), R3 // M[1000] ← R3

23

• Programs consist of a lot of sequential instructions, which are
meant to be executed one after another.

• Thus, programs are stored in memory so that:
– Each program instruction occupies one address.
– Instructions are stored one after another.

• A program counter (PC) keeps track of the current instruction
address.
– Ordinarily, the PC just increments after executing each

instruction.
– But sometimes we need to change this normal sequential

behavior, with special control flow instructions.

Control flow instructions

768: LD R0, #1000 // R0 ← 1000
769: LD R3, (R0) // R3 ← M[1000]
770: ADD R3, R3, #1 // R3 ← R3 + 1
771: ST (R0), R3 // M[1000] ← R3

24

Instruction encoding

• We’ve already seen some important aspects of processor design.
– A datapath contains an ALU, registers and memory.
– Programmers and compilers use instruction sets to issue

commands.
• Now let’s complete our processor with a control unit that

converts assembly language instructions into datapath signals.
– Today we’ll see how control units fit into the big picture, and

how assembly instructions can be represented in a binary
format.

– On Wednesday we’ll show all of the implementation details
for our sample datapath and assembly language.

25

note

• Machine language is the interface between software and processors.
• High-level programs must be translated into machine language before

they can be run.
• There are three main categories of instructions.

– Data manipulation operations, such as adding or shifting
– Data transfer operations to copy data between registers and RAM
– Control flow instructions to change the execution order

• Instruction set architectures depend highly on the host CPU’s design.
– Today we saw instructions that would be appropriate for our

datapath from last week.
– On Monday we’ll look at some other possibilities.

26

Instruction encoding

• We’ve already seen some important aspects of processor design.
– A datapath contains an ALU, registers and memory.
– Programmers and compilers use instruction sets to issue commands.

• Now let’s complete our processor with a control unit that converts
assembly language instructions into datapath signals.
– Today we’ll see how control units fit into the big picture, and how

assembly instructions can be represented in a binary format.
– On Wednesday we’ll show all of the implementation details for our

sample datapath and assembly language.

27

Review: Datapath

• Recall that our ALU has
direct access only to the
register file.

• RAM contents must be
copied to the registers
before they can be used as
ALU operands.

• Similarly, ALU results must
go through the registers
before they can be stored
into memory.

• We rely on data movement
instructions to transfer data
between the RAM and the
register file.

D data
 Write
 D address

 A address B address

A data B data

Register File

WR
DA

AA BA

Q D1
 D0

 S

 RAM
 ADRS
 DATA
 CS
 WR

OUT

MW
+5V

A B

ALU

F
Z
N
C
V
FS FS

 MD

S D1 D0
 Q

 Constant
 MB

28

Block diagram of a processor

• The control unit connects programs with the datapath.
– It converts program instructions into control words for the

datapath, including signals WR, DA, AA, BA, MB, FS, MW, MD.
– It executes program instructions in the correct sequence.
– It generates the “constant” input for the datapath.

• The datapath also sends information back to the control unit. For
instance, the ALU status bits V, C, N, Z can be inspected by branch
instructions to alter a program’s control flow.

Control
Unit

Datapath
Control signals

Status signals

Program

29

Register format ALU operations

ADD R1, R2, R3

• All register format ALU
operations need the same
values for the following
control signals:

• MB = 0, because all operands
come from the register file.

• MD = 0 and WR = 1, to save
the ALU result back into a
register.

• MW = 0 since RAM is not
modified.

D
Register file

A B

DA
AA BA

A B
ALU

G

FS
V
C
N
Z

1 0
Mux B

MB
 0

0 1
Mux D

MD
 0

ADRS DATA

Data RAM

OUT

MW
 0

constant

WR
 1

30

Memory write operations

ST (R0), R1

• All memory write operations
need the same values for the
following control signals:

• MB = 0, because the data to
write comes from the
register file.

• MD = X and WR = 0, since
none of the registers are
changed.

• MW = 1, to update RAM.

D
Register file

A B

DA
AA BA

A B
ALU

G

FS
V
C
N
Z

1 0
Mux B

MB
 0

0 1
Mux D

MD
 X

ADRS DATA

Data RAM

OUT

MW
 1

constant

WR
 0

	Slide Number 1
	Instruction set architectures
	Programming and CPUs
	Control units
	Programming and CPUs
	Slide Number 6
	Slide Number 7
	Memory
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Assembly and machine languages
	Data manipulation instructions
	More data manipulation instructions
	Relation to the datapath
	What about RAM?
	Loading a register from RAM
	Storing a register to RAM
	Loading a register with a constant
	Storing a constant to RAM
	The # and () are important!
	A small example
	Control flow instructions
	Instruction encoding
	note
	Instruction encoding
	Review: Datapath
	Block diagram of a processor
	Register format ALU operations
	Memory write operations

