
Unit 2

College of Computer and Information Sciences
Department of Computer Science

 CSC 220: Computer Organization

Digital Logic Gates

Introduction to Digital Logic Basics
 Hardware consists of a few simple building blocks
 These are called logic gates

 AND, OR, NOT, …
 NAND, NOR, XOR, …

 Logic gates are built using transistors
 NOT gate can be implemented by a single transistor
 AND gate requires 3 transistors

 Transistors are the fundamental devices
 Pentium consists of 3 million transistors
 Compaq Alpha consists of 9 million transistors
 Now we can build chips with more than 100 million transistors

Basic Concepts

 Simple gates
 AND
 OR
 NOT

 Functionality can be
expressed by a truth table
 A truth table lists output for

each possible input
combination

 Precedence
 NOT > AND > OR
 F = A B + A B
 = (A (B)) + ((A) B)

Basic Concepts (cont.)

 Additional useful gates
 NAND
 NOR
 XOR

 NAND = AND + NOT
 NOR = OR + NOT
 XOR implements

exclusive-OR function
 NAND and NOR gates

require only 2 transistors
 AND and OR need 3

transistors!

Basic Concepts (cont.)
 Complete sets
 A set of gates is complete

 If we can implement any logical function using only the type of
gates in the set
 You can uses as many gates as you want

 Some example complete sets
 {AND, OR, NOT} Not a minimal complete set
 {AND, NOT}
 {OR, NOT}
 {NAND}
 {NOR}

 Minimal complete set
 A complete set with no redundant elements.

Basic Concepts (cont.)

 Proving NAND gate is universal

Basic Concepts (cont.)

 Proving NOR gate is universal

Logic Chips (cont.)

Logic Chips (cont.)
 Integration levels
 SSI (small scale integration)

 Introduced in late 1960s
 1-10 gates (previous examples)

 MSI (medium scale integration)
 Introduced in late 1960s
 10-100 gates

 LSI (large scale integration)
 Introduced in early 1970s
 100-10,000 gates

 VLSI (very large scale integration)
 Introduced in late 1970s
 More than 10,000 gates

Prof. Laxmikant Kale - university of illinois
at urbana-champaign - Computer

10

Applications of XOR and
XNOR Gates

Chapter 1: continue

© 2009 Pearson Education, Upper Saddle River, NJ 07458. All Rights Reserved Floyd, Digital Fundamentals, 10th ed

The XOR gate produces a HIGH output only when the
inputs are at opposite logic levels. The truth table is

The XOR Gate

Inputs
A B X

Output

0 0
0 1
1 0
1 1

0
1
1
0

A
B

X A
B

X = 1

The XOR operation is written as X = AB + AB.
Alternatively, it can be written with a circled plus sign
between the variables as X
= A + B.

© 2009 Pearson Education, Upper Saddle River, NJ 07458. All Rights Reserved Floyd, Digital Fundamentals, 10th ed

Example waveforms:

A

X
Notice that the XOR gate will produce a HIGH only when exactly one
input is HIGH.

The XOR Gate

B

A
B

X A
B

X = 1

© 2009 Pearson Education, Upper Saddle River, NJ 07458. All Rights Reserved Floyd, Digital Fundamentals, 10th ed

The XNOR gate produces a HIGH output only when the
inputs are at the same logic level. The truth table is

The XNOR Gate

Inputs
A B X

Output

0 0
0 1
1 0
1 1

1
0
0
1

A
B

X A
B

X

The XNOR operation can be shown as X = AB + AB.

= 1

© 2009 Pearson Education, Upper Saddle River, NJ 07458. All Rights Reserved Floyd, Digital Fundamentals, 10th ed

Example waveforms:

A

X
Notice that the XNOR gate will produce a HIGH when both inputs are
the same. This makes it useful for comparison functions.

The XNOR Gate

B

A
B

X A
B

X
= 1

Applications of XOR and XNOR Gates

• Three common applications:
– Comparators
– Parity generation and checking

Comparator

• A comparator compares two string of bits to see
whether they are equal to each other:
– Example: if string A = 0101 and string B = 0100, then A≠ B.

• Next slide shows how to build a 4-bit comparator from
XNOR gates.

Comparator Circuit

© 2009 Pearson Education, Upper Saddle River, NJ 07458. All Rights Reserved Floyd, Digital Fundamentals, 10th ed

Parity Checking
Parity checking is a method of error detection for
simple transmission errors involving one bit (or an
odd number of bits). A parity bit is an “extra” bit
attached to a group of bits to force the number of 1’s
to be either even (even parity) or odd (odd parity).

The ASCII character for “a” is 1100001 and for “A” is
1000001. What is the correct bit to append to make both
of these have odd parity?
The ASCII “a” has an odd number of bits that are equal to
1; therefore the parity bit is 0. The ASCII “A” has an even
number of bits that are equal to 1; therefore the parity bit
is 1.

Parity Generators

 To implement parity checking, we need circuitry on the
sending end that generates the parity bit for each group
of bits being sent. This circuitry is called a parity
generator.

 Next slide shows how to build 4-bit even or odd parity
generators.

Parity Generators (Book’s Fig. 6-9)

Parity Checkers

• On the receiving end, we need circuitry that checks
the data bits and parity bit as they’re received to
decide whether an error has occurred during
transmission. This circuitry is called a parity
checker.

• Next slide shows how to build a 4-bit-plus-parity even
parity checker.

Parity Checker

Parity System

	Unit 2 �
	Introduction to Digital Logic Basics
	Basic Concepts
	Basic Concepts (cont.)
	Basic Concepts (cont.)
	Basic Concepts (cont.)
	Basic Concepts (cont.)
	Logic Chips (cont.)
	Logic Chips (cont.)
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Applications of XOR and XNOR Gates
	Comparator
	Comparator Circuit
	Slide Number 18
	Parity Generators
	Parity Generators (Book’s Fig. 6-9)
	Parity Checkers
	Parity Checker
	Parity System

