

College of Computer and Information Sciences Department of Computer Science

CSC 220: Computer Organization

Unit 3 Logic Functions

D

Logic Functions

- Number of functions
 - With *N* logical variables, we can define 2^{N} combination of inputs
 - A function relates outputs to inputs
 - Some of them are useful
 - AND, NAND, NOR, XOR, ...
 - Some are not useful:
 - Output is always 1
 - Output is always 0

Logic Functions

Logical functions can be expressed in several ways:

- Truth table
- Logical expressions
- Graphical form

Example:

- Majority function
 - Output is one whenever majority of inputs is 1
 - We use 3-input majority function

Logic Functions (cont.)

3-input majority function

Logical expression form
 F = A B + B C + A C

Logical Equivalence

D

All three circuits implement F = A B function

(c)

Logical Equivalence

- Derivation of logical expression from a circuit
 - Trace from the input to output
 - Write down intermediate logical expressions along the path

Logical Equivalence (cont.)

Proving logical equivalence: Truth table method

Α	В	FI = A B	$F3 = (A + B) (\overline{A} + B) (A + \overline{B})$
0	0	0	0
0	- T	0	0
I.	0	0	0
1	- T	1	I I

Digital logic function : SOP and POS forms

D

Standard Forms for Boolean Expressions

- Sum-of-Products (SOP)
 - Derived from the Truth table for a function by considering those rows for which F = 1.
 - The logical sum (OR) of product (AND) terms.
 - Realized using an AND-OR circuit.
- Product-of-Sums (POS)
 - Derived from the Truth table for a function by considering those rows for which F = 0.
 - The logical product (AND) of sum (OR) terms.
 - Realized using an OR-AND circuit.

Sum-of-Products (SOP)

Sum of products expressions

- There are many equivalent ways to write a function, but some forms turn out to be more useful than others.
- A sum of products or SOP expression consists of:
 - One or more terms summed (OR'ed) together.
 - Each of those terms is a product of literals.

f(x, y, z) = y' + x'yz' + xz

Sum of products expressions can be implemented with two-level circuits.

Minterms

- A minterm is a special product of literals, in which each input variable appears exactly once.
- A function with n input variables has 2ⁿ possible minterms.
- For instance, a three-variable function f(x,y,z) has 8 possible minterms:

x'y'z'	x'y'z	x'y z'	x'y z
x y'z'	x y'z	хуz'	хуz

Each minterm is true for exactly one combination of inputs.

Minterm	True when	Shorthand
x'y'z'	xyz = 000	m _o
x'y'z	xyz = 001	m ₁
x'y z'	xyz = 010	m ₂
x'y z	xyz = 011	m ₃
x y'z'	xyz = 100	m ₄
x y'z	xyz = 101	m ₅
хуz'	xyz = 110	m ₆
хуz	xyz = 111	m ₇

Minterms

Row number	x_1	x_2	x_3	Minterm	Maxterm
$egin{array}{ccc} 0 \ 1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7 \end{array}$	$egin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \end{array}$	$egin{array}{c} 0 \\ 0 \\ 1 \\ 1 \\ 0 \\ 0 \\ 1 \\ 1 \end{array}$	$egin{array}{c} 0 \\ 1 \\ 0 \\ 1 \\ 0 \\ 1 \\ 0 \\ 1 \\ 1 \end{array}$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$M_0 = x_1 + x_2 + x_3$ $M_1 = x_1 + x_2 + \overline{x}_3$ $M_2 = x_1 + \overline{x}_2 + x_3$ $M_3 = x_1 + \overline{x}_2 + \overline{x}_3$ $M_4 = \overline{x}_1 + x_2 + x_3$ $M_5 = \overline{x}_1 + x_2 + \overline{x}_3$ $M_6 = \overline{x}_1 + \overline{x}_2 + x_3$ $M_7 = \overline{x}_1 + \overline{x}_2 + \overline{x}_3$
				<u> </u>	

Sum-of-Products

• Any function F can be represented by a sum of minterms, where each minterm is ANDed with the corresponding value of the output for F.

$$-$$
 F = Σ (m_i . f_i)

where m_i is a minterm

Denotes the logical sum operation

and f_i is the corresponding functional output Only the minterms for which $f_i = I$ appear in the expression for function F. shorthand notation $F = \Sigma (m_i) = \Sigma m(i)$

Sum of minterms expressions

- A sum of minterms is a special kind of sum of products.
- Every function can be written as a unique sum of minterms expression.
- A truth table for a function can be rewritten as a sum of minterms just by finding the table rows where the function output is 1.

х	у	z	C(x,y,z)	C'(x,y,z)
0	0	0	0	1
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	0

$$C = x'yz + xy'z + xyz' + xyz = m_3 + m_5 + m_6 + m_7 = \Sigma m(3,5,6,7)$$

$$C' = x'y'z' + x'y'z + x'yz' + xy'z' = m_0 + m_1 + m_2 + m_4 = \Sigma m(0,1,2,4)$$

C' contains all the minterms *not* in C, and vice versa.

Sum-of-Products

- Sum of minterms are a.k.a. <u>Canonical Sum-of-Products</u>
- Synthesis process
 - Determine the Canonical Sum-of-Products
 - Use Boolean Algebra (and K-maps) to find an optimal, functionally equivalent, expression.

Product-of-Sums (POS)

2 Product of sums expressions

- As you might expect, we can work with the duals of these ideas too.
- A product of sums or POS consists of:
 - One or more terms multiplied (AND'ed) together.
 - Each of those terms is a sum of literals.

g(x, y, z) = y'(x' + y + z')(x + z)

Products of sums can also be implemented with two-level circuits.

- A maxterm is a sum of literals where each input variable appears once.
- A function with n input variables has 2ⁿ possible maxterms.
- For instance, a function with three variables x, y and z has 8 possible maxterms:

x + y + z x + y + z' x + y' + z x + y' + z' x'+ y + z x'+ y + z' x'+ y' + z x'+ y' + z'

Each maxterm is *false* for exactly one combination of inputs.

Maxterm	False when	Shorthand
x + y + z	xyz = 000	Mo
x + y + z'	xyz = 001	M1
x + y'+ z	xyz = 010	M ₂
x + y'+ z'	xyz = 011	M ₃
x'+ y + z	xyz = 100	M4
x'+ y + z'	xyz = 101	M5
x'+ y'+ z	xyz = 110	M ₆
x'+ y'+ z'	xyz = 111	M ₇

Maxterms

Row number x_1 x_2 x_3 MintermMaxterm00000000	
	Row number
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$egin{array}{ccc} 0 \ 1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7 \end{array}$

Product-of-Sums

- The <u>Canonical Product-of-Sums</u> for function F is the Product-of-Sums expression in which each sum term is a Maxterm.
- Synthesis process
 - Determine the Canonical Product-of-Sums
 - Use Boolean Algebra (and K-maps) to find an optimal, functionally equivalent, expression.

Product of maxterms expressions

- Every function can also be written as a unique product of maxterms.
- A truth table for a function can be rewritten as a product of maxterms just by finding the table rows where the function output is .

х	у	z	C(x,y,z)	C'(x,y,z)
0	0	0	0	1
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	0

$$C = (x + y + z)(x + y + z')$$

(x + y' + z)(x' + y + z)
= M₀ M₁ M₂ M₄
= $\prod M(0, 1, 2, 4)$ When the o/p is Zero
= $\sum m(3, 5, 6, 7)$ When the o/p is 1
C' = (x + y' + z')(x' + y + z')
(x' + y' + z)(x' + y' + z')
= M₃ M₅ M₆ M₇
= $\prod M(3, 5, 6, 7)$

C' contains all the maxterms *not* in C, and vice versa.