College of Computer and Information Sciences
Department of Computer Science

CSC 220: Computer Organization

Unit 4 Simplification and K-map

Minimal sums of products

- When used properly, Karnaugh maps can reduce expressions to a minimal sum of products, or MSP, form.
- There are a minimal number of product terms.
- Each product has a minimal number of literals.
- For example, both expressions below (from the last lecture) are sums of products, but only the right one is a minimal sum of products.

$$
x^{\prime} y^{\prime}+x y z+x^{\prime} y=x^{\prime}+y z
$$

- Minimal sum of products expressions lead to minimal two-level circuits.

- A minimal sum of products might not be "minimal" by other definitions! For example, the MSP $x y+x z$ can be reduced to $x(y+z)$, which has fewer literals and operators-but it is no longer a sum of products.

Organizing the minterms

- Recall that an n-variable function has up to 2^{n} minterms, one for each possible input combination.
- A function with inputs x, y and z includes up to eight minterms, as shown below.

X	y	z	Minterm	
0	0	0	x'y'z'	$\left(\mathrm{m}_{0}\right)$
0	0	1	x'y'z	$\left(m_{1}\right)$
0	1	0	x'y z'	$\left(\mathrm{m}_{2}\right)$
0	1	1	x'y z	$\left(\mathrm{m}_{3}\right)$
1	0	0	x y'z'	$\left(\mathrm{m}_{4}\right)$
1	0	1	x y'z	$\left(m_{5}\right)$
1	1	0	xyz'	$\left(m_{6}\right)$
1	1	1	xyz	$\left(\mathrm{m}_{7}\right)$

- We'll rearrange these minterms into a Karnaugh map, or K-map.

m_{0}	m_{1}	m_{3}	m_{2}
m_{4}	m_{5}	m_{7}	m_{6}

$x^{\prime} y^{\prime} z^{\prime}$	$x^{\prime} y^{\prime} z$	$x^{\prime} y z$	$x^{\prime} y z^{\prime}$
$x y^{\prime} z^{\prime}$	$x y^{\prime} z$	$x y z$	$x y z^{\prime}$

- You can show either the actual minterms or just the minterm numbers.
- Notice the minterms are almost, but not quite, in numeric order.

Reducing two minterms

- In this layout, any two adjacent minterms contain at least one common literal. This is useful in simplifying the sum of those two minterms.
- For instance, the minterms $x^{\prime} y^{\prime} z^{\prime}$ and $x^{\prime} y^{\prime} z$ both contain x^{\prime} and y^{\prime}, and we can use Boolean algebra to show that their sum is $x^{\prime} y^{\prime}$.

$x^{\prime} y^{\prime} z^{\prime}$	$x^{\prime} y^{\prime} z$	$x^{\prime} y z$	$x^{\prime} y z^{\prime}$
$x y^{\prime} z^{\prime}$	$x y^{\prime} z$	$x y z$	$x y z^{\prime}$

$$
\begin{aligned}
x^{\prime} y^{\prime} z^{\prime}+x^{\prime} y^{\prime} z & =x^{\prime} y^{\prime}\left(z^{\prime}+z\right) \\
& =x^{\prime} y^{\prime} \cdot 1 \\
& =x^{\prime} y^{\prime}
\end{aligned}
$$

- You can also "wrap around" the sides of the K-map-minterms in the first and fourth columns are considered to be next to each other.

$x^{\prime} y^{\prime} z^{\prime}$	$x^{\prime} y^{\prime} z$	$x^{\prime} y z$	$x^{\prime} y z^{\prime}$
$x y^{\prime} z^{\prime}$	$x y^{\prime} z$	$x y z$	$x y z^{\prime}$

$$
\begin{aligned}
x y^{\prime} z^{\prime}+x y z^{\prime} & =x z^{\prime}\left(y^{\prime}+y\right) \\
& =x z^{\prime} \cdot 1 \\
& =x z^{\prime}
\end{aligned}
$$

Reducing four minterms

- Similarly, rectangular groups of four minterms can be reduced as well. You can think of them as two adjacent groups of two minterms each.

$x^{\prime} y^{\prime} z^{\prime}$	$x^{\prime} y^{\prime} z$	$x^{\prime} y z$	$x^{\prime} y z^{\prime}$
$x y^{\prime} z^{\prime}$	$x y^{\prime} z$	$x y z$	$x y z^{\prime}$

- These four green minterms all have the literal y in common. Guess what happens when you simplify their sum?

$$
\begin{aligned}
x^{\prime} y z+x^{\prime} y z^{\prime}+x y z+x y z^{\prime} & =y\left(x^{\prime} z+x^{\prime} z^{\prime}+x z+x z^{\prime}\right) \\
& =y\left(x^{\prime}\left(z+z^{\prime}\right)+x\left(z+z^{\prime}\right)\right) \\
& =y\left(x^{\prime}+x\right) \\
& =y
\end{aligned}
$$

Reducible groups

- Onlv rectangular groups of minterms, where the number of minterms is a power of two, can be reduced to a single product term.
- Non-rectangular groups may not even contain a common literal.

- Groups of other sizes cannot be simplified to just one product term.

$x^{\prime} y^{\prime} z^{\prime}$	$x^{\prime} y^{\prime} z$	$x^{\prime} y z$	$x^{\prime} y z^{\prime}$
$x y^{\prime} z^{\prime}$	$x y^{\prime} z$	$x y z$	$x y z z^{\prime}$

The pattern behind the K-map

- The literal x occurs in the bottom four minterms, while the literal x^{\prime} appears in the top four minterms.

x^{\prime}	$x^{\prime} y^{\prime} z^{\prime}$	$x^{\prime} y^{\prime} z$	$x^{\prime} y z$	$x^{\prime} y z^{\prime}$
x	$x y^{\prime} z^{\prime}$	$x y^{\prime} z$	$x y z$	$x y z z^{\prime}$

- The literal y shows up on the right side, and y^{\prime} appears on the left.

y^{\prime}		y	
$x^{\prime} y^{\prime} z^{\prime}$	$x^{\prime} y^{\prime} z$	$x^{\prime} y z$	$x^{\prime} y z^{\prime}$
$x y^{\prime} z^{\prime}$	$x y^{\prime} z$	$x y z$	$x y z^{\prime}$

- The literal z occurs in the middle four squares, while z ' occurs in the first and fourth columns.

$x^{\prime} y^{\prime} z^{\prime}$	$x^{\prime} y^{\prime} z$	$x^{\prime} y z$	$x^{\prime} y z^{\prime}$
$x y^{\prime} z^{\prime}$	$x y^{\prime} z$	$x y z$	$x y z^{\prime}$
z^{\prime}	z		z^{\prime}

Filling in the K-map

- Since our labels help us find the correct position of minterms in a K-map, writing the minterms themselves is redundant and repetitive.
- We usually just put a 1 in the K-map squares that correspond to the function minterms, and 0 in the other squares.
- For example, you can quickly fill in a K-map from a truth table by copying the function outputs to the proper

$$
f(x, y, z)=x^{\prime} y^{\prime} z+x y^{\prime} z+x y z^{\prime}+x y z
$$ squares of the map.

Four steps in K-map simplifications

1. Start with a sum of minterms or truth table. $x^{\prime} y^{\prime} z^{\prime}+x^{\prime} y^{\prime} z+x y z+x y z^{\prime}$
2. Plot the minterms on a Karnaugh map.

		y		
	1	1	0	0
x	0	0	1	1
		z		

3. Find rectangular groups of minterms whose sizes are powers of two. Be sure to include all the minterms in at least one group!

4. Reduce each group to one product term.
$x^{\prime} y^{\prime}+x y$

The tricky part

- The tricky part is finding the best groups of minterms.
- Each group represents one product term, so making as few groups as possible will result in a minimal number of products.
- Making each group as large as possible corresponds to combining more minterms, and will result in a minimal number of literals.
- Which groups would you form in the following example map?

Example 3

Minimizing the number of groups

- The following two possibilities include too many groups, and would result in more product terms than necessary.

- We can put all six minterms into just two groups. Two ways of doing this are shown below.

Solutions for practice K-map 1

- Here is the K-map for $f(x, y, z)=m_{1}+m_{3}+m_{5}+m_{6}$, with all groups shown.
- The magenta and green groups overlap, which makes each of them as large as possible.
- Minterm m_{6} is in a group all by its lonesome.

MSP

Minimal Sum of Product

Example 4

- The final MSP here is $x^{\prime} z+y^{\prime} z+x y z$ '.

Don't care conditions

- There are times when we don't care what a function outputs-some input combinations might never occur, or some outputs may have no effect.
- We can express these situations with don't care conditions, denoted with X in truth table rows.
- An expression for this function has two parts.
- One part includes the function's minterms.
- Another describes the don't care conditions.

x	y	z	$f(x, y, z)$
0	0	0	0
0	0	1	0
0	1	0	x
0	1	1	1
1	0	0	x
1	0	1	x
1	1	0	0
1	1	1	0

$$
f(x, y, z)=m_{3}, d(x, y, z)=m_{2}+m_{4}+m_{5}
$$

- Circuits always output 0 or 1 ; there is no value called "X". Instead, the Xs just indicate cases

Example 5 where both 0 or 1 would be acceptable outputs.

Don't care simplifications

- In a K-map we can treat each don't care as 0 or 1 . Different selections can produce different results.

Example 5

- In this example we can use the don't care conditions to our advantage.
- It's best to treat the bottom two Xs as 0s. If either of them were 1, we'd end up with an extra, unnecessary term.
- On the other hand, interpreting the top X as 1 results in a larger group containing m_{3}.
- The resulting MSP is $x^{\prime} y$.

Four-variable Karnaugh maps

- We can do four-variable Karnaugh maps too!
- A four-variable function $f(w, x, y, z)$ has sixteen possible minterms. They can be arranged so that adjacent minterms have common literals.
- You can wrap around the sides and the top and bottom.
- Again the minterms are almost, but not quite, in numeric order.

			y		
	w'x'y'z'	w'x'y'z	w'x'y z	w'x'y z'	
	w'xy'z'	w'x y'z	w'xy z	w'x y z'	X
W	w x y'z'	$w \times y^{\prime} z$	w x y z	w x y ${ }^{\prime}$	
	$w x^{\prime} y^{\prime} z^{\prime}$	w x'y'z	$w x^{\prime} y z$	w x'y z'	

Four-variable example

- Let's say we want to simplify $m_{0}+m_{2}+m_{5}+m_{8}+m_{10}+m_{13}$

			y		
	1	0	0	1	
	0	1	0	0	
	0	1	0	0	x
w	1	0	0	1	
					Example 6

- The following groups result in the minimal sum of products $x^{\prime} z^{\prime}+x y^{\prime} z$.

Prime implicants

- Finding the best groups is even more difficult in larger K-maps.
- One good approach to deriving an MSP is to first find the largest possible groupings of minterms.
- These groups correspond to prime implicant terms.
- The final MSP will contain a subset of the prime implicants.
- Here is an example K-map with prime implicants marked.

Example 7

Essential prime implicants

- If any minterm belongs to only one group, then that group represents an essential prime implicant.
- Essential prime implicants must appear in the final MSP, which has to include all of the original minterms.

- This example has two essential prime implicants.
- The red group ($w^{\prime} y$) is essential, since m_{0}, m_{1} and m_{4} are not in any other group.
- The green group ($w x^{\prime} y$) is essential because of m_{10}.

Covering the other minterms

- Finally, pick as few other prime implicants as necessary to ensure that all of the original minterms are included.

Example 7

- After choosing the red and green rectangles in our example, there are just two minterms remaining, m_{13} and m_{15}.
- They are both included in the blue prime implicant, wxz.
- The resulting MSP is $w^{\prime} y^{\prime}+w x z+w x ' y$.
- The magenta and sky blue groups are not needed, since their minterms are already included by the other three prime implicants.

Solutions for practice K-map 2

- Simplify the following K-map.

Example 8

- All prime implicants are circled.
- The essential prime implicants are $x z$ ', wx and $y z$.
- The MSP is $x z^{\prime}+w x+y z$. (Including the group $x y$ would be redundant.)

Practice K-map 3

- Find a minimal sum of products for the following.

$$
f(w, x, y, z)=\Sigma m(0,2,4,5,8,14,15), d(w, x, y, z)=\Sigma m(7,10,13)
$$

Example 9

Solutions for practice K-map 3

- Find a minimal sum of products for the following.

$$
f(w, x, y, z)=\Sigma m(0,2,4,5,8,14,15), d(w, x, y, z)=\Sigma m(7,10,13)
$$

Example 9

- All prime implicants are circled. We can treat Xs as 1s if we want, so the red group includes two Xs , and the light blue group includes one X .
- The only essential prime implicant is x 'z'. The red group is not essential because the two minterms in it also appear in other groups.
- The MSP is $x^{\prime} z^{\prime}+w x y+w^{\prime} x y^{\prime}$. It turns out the red group is redundant; we can cover all of the minterms in the map without it.

Practice K-map 2

- Simplify the following K-map.

Example 8

			y		
	0	0	1	0	
	1	0	1	1	
W	1	1	1	1	X
	0	0	1	0	

Conclusion

- Kmaps provide an easy graphical method of simplifying Boolean expressions.
- A Kmap is a matrix consisting of the outputs of the minterms of a Boolean function.
- In this section, we have discussed 2-3- and 4input Kmaps. This method can be extended to any number of inputs through the use of multiple tables.

Conclusion

Recapping the rules of Kmap simplification:

- Groupings can contain only 1s; no 0s.
- Groups can be formed only at right angles; diagonal groups are not allowed.
- The number of 1 s in a group must be a power of 2 - even if it contains a single 1.
- The groups must be made as large as possible.
- Groups can overlap and wrap around the sides of the Kmap.
- Use don't care conditions when you can.

