agosacllioll
Hing Saud University

College of Computer and Information Sciences
Department of Computer Science

CSC 220: Computer Organization

Unit 6
COMBINATIONAL CIRCUITS-2

Objectives

o Multiplexers
°])eh4uhqﬂexers
 Decoders

e Encoders

) :

A 2-to-1 multiplexer

= Here is the circuit analog of that printer switch.

— S

— D1 Q—
— DO

= This is a 2-to-1 multiplexer, or mux.
— There are two data inputs DO and D1, and a select input called S.
— There i1s one output named Q.

= The multiplexer routes one of its data inputs (DO or D1) to the output Q,
based on the value of S.

— If 5=0, the output will be DO.
— If 5=1, the output will be D1.

Building a multiplexer

Here is a truth table for the multiplexer, based on
our description from the previous page:

The multiplexer routes one of its data

inputs (DO or D1) to the output Q, based
on the value of 5.

— If 5=0, the output will be DO.
— If 5=1, the output will be D1.

You can then find an MSP for the mux output Q.

Note that this corresponds closely to our English
specification above—sometimes you can derive an
expression without first making a truth table.

S D1 DO| Q
0 0 0|0
o 0 1 1
0 1 0] 0
o 1 1 1
T 0 0|0
T 0 1] 0
1 1T 0|1
1 1 1 1

S

D1 Q

Do

Multiplexer circuit diagram

= Here is an implementation of a 2-to-1 multiplexer.

DO

Q=5'D0 + 5 D1

= Remember that a minimal sum of products expression leads to a minimal
two-level circuit.

Blocks, abstraction and modularity

= Multiplexers are common enough that we often want to treat them as
abstract units or black boxes, as symbolized by our block diagrams.

— Block symbols make circuit diagrams simpler, by hiding the internal
implementation details. You can use a device without knowing how

it’s designed, as long as you know what it does.
— Different multiplexer implementations should be interchangeable.

— Circuit blocks also aid hardware re-use, since you don’t have to keep
building a multiplexer from scratch every time you need one.

= These blocks are similar to functions in programming languages!

Enable inputs

Many devices have an additional enable input,
which "activates” or “deactivates” the device.

We could design a 2-to-1 multiplexer with an
enable input that’s used as follows.

— EN=0 disables the multiplexer, which forces
the output to be 0. (It does not turn off the
multiplexer.)

— EN=1 enables the multiplexer, and it works
as specified earlier.

Enable inputs are especially useful in combining
smaller muxes together to make larger ones, as
we’ll see later today.

— EN
— S

— D1
— DO

o —

EN S D1 DO| Q
0O 0 0 O0fO
0O 0 0 10
0o 0o 1 0fO
0O 0 1 11|10
0O 1 0 0fO
o 1 0 1[0
0 1 1 010
0 1 1 1|10
T 0 0 0| O
T 0 0 1 1
1T 0 1 0/|O
T 0 1 1 1
1 1 0 010
1 1 0 110
1 1 1 0| 1
1 1 1 1 1

Truth table abbreviations

EN S D1 DO| Q
0O |0 O 0f|]O0
o |0 0 1]]0
O |0 1 0f]O0
0O [0 1 111 O
o1 0O 0f] 0
o1 0 1] 0
0 |1 1 0] 0
0 L1 1 1] 0
T 0 0 0]O0
T 0 0 1 1
1T 0 1 0]0
T 0 1 1 1
1 T 0 0|0
1 T 0 1|0
1 1 1 0] 1
1 1 1 1 1

=i i -3 3 i & i 4 |}

Notice that when EN=0, then Q is always 0O,
regardless of what S, D1 and DO are set to.

We can shorten the truth table by including Xs
in the input variable columns, as shown on the
bottom right.

m
=

D1

D w0000 |x |w
A~ 200200 |Xx

—~o—~0~,0=~0|x|&
——m0O0O=0=0|0|0O

Another abbr. 4 U

Also, when EN=1 notice that if 5=0 then Q=D0, but if 5=1 then Q=D1.

Another way to abbreviate a truth table is to list input variables in the
output columns, as shown on the right.

EN S D1 DO| Q

0 x x x| 0

1 0 0 0]o0

1 0 0 1|1 ESSE
1 0 1 0o X
10 1 1| 1| WSS [0o |oo
1 1 0 0]o0 1 1]|D1
11 0 1]o0

11 1 0|1

101 1 1|1

This final version of the 2-to-1 multiplexer truth table i1s much clearer,
and matches the equation Q = 5'D0 + S D1 very closely.

A 4-to-1 multiplexer

Here is a block diagram and abbreviated truth table for a 4-to-1 mux,
which directs one of four different inputs to the single output line.

— There are four data inputs, so we need two bits, S1 and S0, for the
mux selection input.

— LogicWorks multiplexers have active-low enable inputs, so the mux
always outputs 1 when EN’ = 1. This 1s denoted on the block symbol
with a bubble in front of EN.

e EN' 51 S0 | Q
— &1 0 0 0 DO
—S0 0o o0 1 | D1
—D3 o 1 o0 |Db2
122 a— o 1 1 |D3
s 1 X X 1

Q =51"S0D0 + 51’50 D1 + 51 SO’D2 + 51 SO D3

A 4-to-1 multiplexer implementation

= Again we have a minimal sum of products expression, which leads to a
minimal two-level circuit implementation.

51 50

D3:

D2

D1:

DO

Q =51’S0’D0O + S1’S0 D1 + S1 5S0°D2 + 51 SO D3

e

2"-to-1 multiplexers

= You can make even larger multiplexers, following the same pattern.
= A 2"-to-1 multiplexer routes one of 2" input lines to the output line.
— There are 2" data inputs, so there must also be n select inputs.

— The output 1s a single bit.
= Here is an 8-to-1 multiplexer, probably the biggest we’ll see in this class.

&
m
Z

L]
)
i
i

4 N

Implementing Functions with Multiplexers

Example: addition

= Multiplexers can sometimes make circuit design easier.
= As an example, let’s make a circuit to add three 1-bit inputs X, Y and Z.
= We’'ll need two bits to represent the total.
— The bits will be called C and S, standing for “carry” and "sum.”
— These are two separate functions of the inputs X, Y and Z.
= A truth table and sum of minterm equations for C and S are shown below.

C(X,Y,Z) = m(3,5,6,7)

0+1+1=10—p S(X,Y,Z) = £Em(1,2,4,7)

S Y = s I s I e };:
= = O = = 0O 0 —r.::

—_ = =k = O OO ﬁ

- 0= 0—=-0=0|iM
- OO0 = 0= =0|wv

1+1+1=11—P

Prof. Laxmikant Kale - university of illinois at urbana-champaign - Computer Sciences/

C(X,Y,Z) = =m(3,5,6,7)
S(X,Y,Z) ==m(1,2,4,7)

- —

X Y Z]C S
O 0 0|0 O

- —

oo

1

1

Q—C{X,Y.L)

0+1+1=10—p| 0

1+1+1=11=—p 1

X Y Z]C

O = 0O — QO — O —

OO0 —— QO O «— «—

OO0 00 «— — —

Dr Mohamed A Berbar

® Given an input line and a set of selection lines, the demultiplexer

Demultiplexer

will direct data from input to a selected output line.

® An example of a 1-to-4 demultiplexer:

Data D

demux

I

select

Demultiplexer

Outputs

———————————

S]_ So YO Yl Y2 Y3

0 O D 0 0 O

0 1 0O D 0 O

1 0 0O 0 D O

1 1 0O 0 0 D
CS1104-7

/

Demultiplexer

® Takes one input

® Out to one of 2" possible outputs

o])

So . . '—}
i

S

e

Fig. 3-24 1-to-4-Line Demultiplexer

Y1

Y2

Y3

16

-

Decoder

What a decoder does

A n-to-2" decoder uses its n-bit input to determine which of 2" outputs
will be uniquely activated.

s1 SO[Q0 Q1 Q2 Q3

B Q3 — o o|l1 0o o0 O
=T o 1/0 1 0 o
. 1 0|l0 O 1 O

1 110 0 0 1

Here is a block diagram and truth table for a 2-to-4 decoder.

— The two-bit input is called 5150, and the four outputs are Q0-Q3.

— If the input is the binary number 1, then output Qi alone will be true.
This circuit “decodes” a binary number into a “one-of-four” code.

/

e

Building a decoder

= We can use the truth table to derive minimal sum of products equations
for each of the four outputs (Q0-Q3), based on the two inputs (50-51).

ST SO(Q0 Q1 Q2 Q3
o of1 O O O
o 1(0 1 0 O
1 010 0 1 O
1 110 0 0 1

= |n this case there’s not much to be simplified. Here are the equations:

QO =51's50°
Q1 =51’S0
Q2 =5150°
Q3 =5150

4 N

Decoder circuit diagram

» Here is an implementation of a 2-to-4 decoder.

51 50
mi R .
T o VY
' i _}ua 51 50
s1 so[Q0 Q1 Q2 Q3 __—} 0251 <0
g ? {!J [1] g g T _3 01 =81'80
KR s

e

Enable inputs

= Just as with multiplexers, decoders can include enable inputs.

— EN=0 disables the decoder, which by convention means that all of the
decoder’s outputs are 0.

— EN=1 enables the decoder so that it behaves as specified earlier, with
exactly one of the outputs being 1.

EN ST SO | Q0 Q1 Q2 Q3

_IeN oal— 0 X x| O 0 O 0
Q2

ey aT - 1 0O O 1 0 0 0

—{50 Q0 1 0 1 0 1 0 0

1 1 O] 0 O 1 0

1 1 1 0O 0 0 1

Decoders with Enable (1/2)

® Decoders often come with an enable signal, so that the device is only

activated when the enable, E=1.

Fo Fi F» Fs }FO:EXY

" Truth table:

E X Y

1 0 0|1 0 0 O |

1 0 1]0 1 0 O -—j— F, = EX'Y
1 1 0|0 0 1 0

1 1 1|0 0 0 1

0 X X| 0 0 0 0 1 °—3— F, = EXY’

T 10—)— F=Exy

= Circulit: ﬁ& ﬁ&

@ Decoders with Enable

Demultiplexer Vs Decoder

" The demultiplexer 1S actually 1dentical to a decoder with
enable, as illustrated below:

— Y,=D.S,'S,
2X4 | _ ,
S1— Decoder Y1=D.5,.5,
S,— —— Y,=D.S,.S,

D

Exercise: Provide the truth table for above demultiplexer.

@ Demultiplexer CS1104-7 /

e
A Demux Using NAND Gates:

A Decoder with an Enable

> B E

: > 0
T
S—— > 1

“—===0 | g
~——o= | g
~—o== | g
“Oo——a | g

(a) Logic diagram

A 3-to-8 decoder

Larger decoders are similar. Here is a 3-to-8 decoder.

— There are three selection inputs 525150, which
activate one of eight outputs, Q0-Q7.

— Again, only one output will be true for any input
combination.

A truth table and output equations for a 3-to-8 decoder
(without EN) are given below.

S2 S1 SO | Q0 Q1 Q2 Q3 Q4 Q5 Q6 Q7

- = 00==00
-~ 0=, 0=0=0
OCooOO0O0OO0O =
o000 O0=0
o000 —=00
o OO O =0 OO
o000 =00 00
oo—-000O0O0O
O—-00000O
— 0000000

Q7 —
—EN Q6

Q5 —

Q4
{82 Q3
—s1 Q2—
—50 Q1

Qo —
QO =52'51’S0’
Q1 =52"51'S0
Q2 =52'S1 SO’
Q3 =52'S1 S0
Q4 =52 51’S0’
Q5 =52 51°S0
Q6 =52 51 50°

Q7 =52 5150

Building a 3-to-8 decoder

You could build a 3-to-8 decoder from the truth table and MSP equations
below, just like we built the 2-to-4 decoder earlier.

Another way to design a decoder is to break it into smaller pieces.
Notice some patterns in the table below:
— When 52 = 0, outputs Q0-Q3 are generated as in a 2-to-4 decoder.
— When S2 = 1, outputs Q4-Q7 are generated as in a 2-to-4 decoder.

52 51 S0 |Q0 Q1 Q2 Q3 Q4 Q5 Q6 Q7
1 0 0 O
o 1 0 O
o 0 1 O
O 0 0 1

- = == 0000
—_ 0 =D == 0

OO0 0=
o0 =0
o =00
= O O 0O

e

Decoder expansion

= Here’s a 3-to-8 decoder built from two St s s
smaller 2-to-4 decoders. 82§ ’ —EN gg—g -gg
= When 52=0, the bottom 2-to-4 decoder &1 * —151 Q1 — ' Q5
is enabled and generates a 1 for one of =" 7§ * S0 Qb
outputs Q0, Q1, QZ or Q3. | [e oa
= When 52=1, the top 2-to-4 decoder is Q21— -312
enabled instead, and a 1 will be output _32, Sﬂ-,_g . Q0
for either Q4, Q5, Q6 or Q7. S e s s s e s s s s e e
52 ST SO |Q0 Q1 Q2 Q3 Q4 Q5 Q6 Q7
1 O 0 O
0 1 0O O
0O 0 1 0
O 0 0 1

S 220000
SN = Y= P i
N = P o P o Ry
o000 =
OO =0
O=00
—~ 000

Dr Mohamed A Berbar

Modularity

You could verify that this circuit is a 3-to-8 decoder, by using equations
for the 2-to-4 decoders to derive equations for the 3-to-8.

Be careful not to confuse the "inner” inputs and outputs of the 2-to-4
decoders with the “outer” inputs and outputs of the 3-to-8 decoder.

This is similar to having several functions in a program which all use a
formal parameter "x”.

52— —EN Q3 —: Q7
£ Q2 —i— QB

51 5 —51 Q1—:— Q5
L

50— S0 00— Q4
\—| >o—EN Q35— Q3
oz2—f Q2

51 Q11— Q1

Larger Decoders (2/6)

—0> Fs=wx'y
0 Fe=wxy

F, = wxy

0 = disabled

@ Larger Decoders

O— Fp=w'x'y'

> F1: WIXIy

F, = wxy

(-

2x4

0 w— Dec 9 - Fo=
0 x———— S 15—~ F,=
1y ¢ 1 So 2 Fz
= 3 Fy=

o> 1 = enabled

2xX4 0

Dec Ofp= Fa=
~ S1 L Fs=

? 3 F.=

0 = disabled

Larger Decoders

Larger Decoders (3/6)

w'X'y'

= w'x'y
w'xy'
w'Xy

wx'y'
wx'y
= wxy'
= WXy

3x8
Dec O Fo=wXYy
w— S, 1 > F,=w'x'y
X 7 1S; :
y So L '
7 F, = wxy
CS1104-7

/

Larger Decoders

(-

2x4
L w— Dec O - Fo=
1 x——— S, 11—~ F,=
oy ¢ " Sy 20 Fz
= 3 Fy=
o> 0 = disabled
2xX4 0
Dec O 5 Fa=
~ S1 L Fe=
? 3 F.=
1 = enabled

Larger Decoders (4/6)

w'X'y'

= w'x'y
w'xy'
w'Xy

wx'y'
wx'y
= wxy'
= WXy

3x8
Dec O Fo=wXYy
w— S, 1 > F,=w'x'y
X 7 1S; :
y So L '
7 F, = wxy
CS1104-7

/

Larger Decoders (5/6)

| F AT 4x16
Question: y s, Dec O F,
Construct a 4x16 decoder from « —'s I— F
. 2 .
two 3x8 decoders with 1- y — 1S, '
enable. z So 15 Fis
3x8
w Dec 0 ~ F
X 1> 1— F
y \ 4 > Sl . .1
z ? 1% ¢ 7 R
N
T
3x8
Dec Of— Fg
s, —F
= S; . :
1% ¢ 7 Fus
Larger Decoders

CS1104-7

/

e

So what good is a decoder?

Do the truth table and equations look familiar?

S1 SO0 |1Q0 Q1 Q2 Q3

0o o|l1 0 0 O Q0 =51°50°
o 110 1 0 o0 Q1 =51'50
1 o]0 0 1 o0 Q2 =51 50’
1 1]10 0 0 1 Q3 =51 S0

Decoders are sometimes called minterm generators.
— For each input combination, exactly one output is true.
— Each output equation contains all of the input variables.

This means that you can easily use a decoder, or a minterm generator, to
implement any sum of minterms expression.

g Implementing Functions with Decoder A

Example: addition

= Yesterday we presented a simple circuit which added three 1-bit inputs
X, Y and Z to produce a two-bit output, C (“carry”) and S ("sum”).

= A truth table and sum of minterm equations for C and S are shown below.

C(X,Y,Z) = =m(3,5,6,7)
S(X,Y,Z) = ¥m(1,2,4,7)

—_—_ e —= = DO 00X
—_ = 00 = =00|<
= O =0=0=0|M
- = =2 0O0=000|0
= 00 =0 ==0|wvn

= Today we’'ll implement these two functions using 3-to-8 decoders.

Prof. Laxmikant Kale - university of illinois at urbana-champaign - Computer
Sciences

- /

4

Implementing functions with decoders

= Here, a 3-to-8 decoder implements C as a sum of minterms.

"‘t Q7
EN Sg I C{X.Y.Z) =Tm(3.5,6,7)
m I
X—s2 03—
Y—s51 02—
Z—s0 ol
QO

= |f XYZ1is 011, 101, 110 or 111, then one of the decoder outputs Q3, Q5,
Q6 or Q7 will be true, and the output C(X,Y,Z) will also be true.

= The "+5V"” symbol ("5 volts”) represents a 1 or true in LogicWorks.

Dr Mohamed A Berbar

Decoder-based sum

+5V
T &
EN Q8

Q5(—

y Q4+—— |

—s2 Q@3 “— ~

Y—81 o2—— 0 SRY.Z)=Im(1,24.7)

Z—s0 Qif—
Q0—

= |f XYZ1s 001, 010, 100 or 111, then one of decoder outputs Q1, Q2, Q4 or
Q7 will be true, and S(X,Y,Z) will be true as well.

e

Using just one decoder

= Since the two functions C and S both have the same inputs, we could use
just one decoder instead of two.

+5%
T -
EN gg CLY.Z) =Zm(3,5,8,7)

Q4

X—s2 Q3

Y— 81 Q21—

Z—sp o — SOLY.Z) =Em(1,2,4,7)
Q0

= Decoder output QO is unused, while Q7 is used multiple times. In general,
you can always use circuit outputs as many or as few times as you need.

/Decoders: Implementing Functions
Example: Full adder

3x8 ol 1 X 'y z C S
=)0 0 O 0 0
o6 A Y >—5s0T 001 o1
26 0 1 0 0 1
0 X Sz 3o 011 1 0
0O Y—1s, A6 1 0 0 0 1
s @—CO 101 1 0
0 Z S 1 1 0 1 0
0 0
6 . 1 1 1 1 1
71 O

@ Decoders: Implementing Functions CS1104-7

/

/

(-

1 X
1Y
1 2

Decoders: Implementing Functions

3x8

Dec

0y
[T

S

:

!

~N o Ol W DN -2 O
RO g P g o

Decoders: Implementing Functions

PRPPRPPOOOO|X

PR OORPFOOK

P OPFRPORFRPROPFRO|N

PR FRPOFRPOOO|IN
RPOOFRORRFRLROW

CS1104-7

/

(-

n Example:

F(a,b,c) = 2. m(4,6,7)

® Using a 3X8 decoder (assuming 1-enable and active-high outputs).

3x8 0
Dec 1
2
a — | Sz 3
b— s, 4
| 5
C So 5
EN 1

|

1

Reducing Decoders

CS1104-7

/

Encoder

* Encoder is the opposite of decoder
® 2" inputs
® or less — 10 inputs in “Decimal to BCD” encoder: I, I, 1,, L5,
L
¢ n outputs

® 4 output lines “Decimal to BCD”encoder

40

e

Truth Table: 8-to-3 Binary Encoder

Inputs Outputs
D, D¢ D; D, D; D, D, D, A, A, A,
0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0 0 1
0 0 0 0 0 1 0 0 0 1 0
0 0 0 0 1 0 0 0 0 1 1
0 0 0 1 0 0 0 0 1 0 0
0 0 1 0 0 0 0 0 1 0 1
0 1 0 0 0 0 0 0 1 1 0
1 0 0 0 0 0 0 0 1 1 1

41

Inputs are Minterms

¢ Can OR the minterms appropriately to get each of the outputs

AO> Al p A2
[] . i i i
Inputs Outputs
D, D D D, D, D, D, D, A, A, A,
0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0o (1) 0 0 0 1
0 0 0 0 0. 1 v 0 0 1 0
0 0 0 0 (1) o0 0 0 0 1 1
0 0 295 1 U 0 0 0 1 0 0
0 o (1) o0 0 0 0 0 1 0 1
0 1 0 0 0 0 0 0 1 1 0
(D) 0 0 0 0 0 0 0 1 1 1
~=~ =

42

e

‘AO:D1+D3+D5+D7
‘A1:D2+D3+D6+D7
* A, =D, +D;+ D¢+ D,

Generating Outputs using OR of Minterms

Inputs Outputs
D, D¢ Ds D, D; D, D, D, A; A, A,
0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0 0 1
0 0 0 0 0 1 0 0 0 1 0
0 0 0 0 1 0 0 0 0 1 1
0 0 0 1 0 0 0 0 1 0 0
0 0 1 0 0 0 0 0 1 0 1
0 1 0 0 0 0 0 0 1 1 0
1 0 0 0 0 0 0 0 1 1 1

43

	Slide Number 1
	Objectives
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Demultiplexer
	Demultiplexer
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Decoders with Enable (1/2)
	Demultiplexer Vs Decoder
	A Demux Using NAND Gates:�A Decoder with an Enable
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Larger Decoders (2/6)
	Larger Decoders (3/6)
	Larger Decoders (4/6)
	Larger Decoders (5/6)
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Decoders: Implementing Functions�Example: Full adder
	Decoders: Implementing Functions
	Slide Number 39
	Encoder
	Truth Table: 8-to-3 Binary Encoder
	Inputs are Minterms
	Generating Outputs using OR of Minterms

