g clloldl

King Saud University

College of Computer and Information Sciences
Department of Computer Science

CSC 220: Computer Organization

unit 7
Sequential Circuits
(Flip Flop, Registers)

Sequential circuits

Input Cutput
‘:D Combinational :>
Logic Circuit | Bositive
» Feedback
Previous
State

Memory “ _I_I_ Clock
- Signal

In contrast, the outputs of a sequential circuit depend on not only the
inputs, but also the state, or the current contents of some memory.

This makes things more difficult to understand since the same inputs can
yield different outputs, depending on what’s stored in memory.

The memory contents can also change as the circuit runs, so the order in
which things occur makes a difference.

SR Flip-Flop

The SR flip-flop, also known as a SR Latch, can be considered as one of the most
basic sequential logic circuit possible.

This simple flip-flop is basically a one-bit memory bistable device

It has two inputs,

one which will “SET” the device (meaning the output = “1”), and is labelled S and
another which will “RESET” the device (meaning the output = “0”), labelled R.

‘“ﬁ
%

SR
Flip-flop

e
Q
O

Symbol

A really confusing circuit

Let’s use NOR gates instead of inverters. The SR latch here has two inputs
S and R, which will let us control the outputs Q and Q.

R

S o’

Q and Q' feed back into the circuit, so they're not only outputs, they're
also inputs!

To figure out how Q and Q' change, we must look at not only the inputs S
and R, but also the current values of Q and Q.

1“::'-ma:-:t {R * Q’current):
anext (5 * chrrentr

Let’s see how different input values for S and R affect this thing.

4

Storing a value: SR = 00

WhatifS=0and R =0¢
The equations on the right reduce to:

Qwext = {D + Q. n:l_men'L} = I:lj.curr»ent
Q— next {D Q—current - Q— current

So when SR = 00, then Q, .. = Qcyrrent-

This 1s exactly what we need to store values in
the latch.

R

B

S o
Q—next - R l‘:1- current]
Q next S Q—current}

Setting the latch: SR = 10

Q

|Q'?”E’ﬂ = (1 + Qyrrent)” =0 |

= Then this new value of Q" goes into the top NOR
gate, along with R = 0. Qoo

S Q'

=| Whatif S=1and R =0? R
= SinceS=1,Q ..150, regardless of Q_, rent-
I

(+Q cu rren[) :
Q’ = (S +
| Q—next _ D . D] 1 | next QCUFFET‘II

= | Sowhen SR =10, then Q" .., =0and Q.. = 1.
This 1s how you set the latch to 1; the 5 input
stands for "set.”

= Notice it can take up to two steps (two gate
delays) from the time $S becomes 1 to the time
Q.o DECOMES 1.

= But once Q,.,, becomes 1, the outputs will stop
changing. This i1s a stable state.

SR latches are memories!

= This characteristic table shows that our

latch provides everything we need in a 2L Q

memory: we can set it, reset it, or keep O 0 |No change

the current value. O 11 O (reset)
1 0O 1 (set)

= The output Q represents the data stored
in the latch. It 1s also called the state of
the latch.

* We can expand the table above into a nputs Currenj; Next :
state table, which explicitly shows that > RJ1Q Q1Q Q
the next values of Q and Q" depend on c 010 110 1
their current values, as well as on the 0 0 1 0 T 0
nputs S and R. 0 1 0 1 0 1

The NOR Gate SR Flip-flop o 111 010 1

Pl 1 010 1 1 0
. ° tol1 ol o
o L

° ——o Q

R (reset)

NOR Circuit

An SR latch with a control input

Here is an SR latch with a control input C, which acts like an enable.

T— : S R
S (S "
= }‘ A \p—-r Q |0 x x| 1 1 |Nochange
C — o 1 0 0] 1 1 |Nochange
B 1 0 111 0] 0 (reset)
= B p (R 1 P=EQ 19 1 0|0 1] 1(set)
. e 1T 1 110 O !

Notice the hierarchical design!
— The dotted blue box contains the S’R’ latch from the previous slide.

— The additional NAND gates are simply used to generate appropriate
inputs for the S’R’ latch.

We’ll see more of the control input later today.

D latch

= A D latch 1s also based on an $'R’ latch. The additional gates generate the
S’ and R’ signals, based on inputs D ("data™) and C ("control™).

— When C =0, 5 and R" are both 1, so Q does not change.
— When C = 1, the latch output Q will equal the input D.

ol + ' 0 x | No change
| L o] 0
N S D s S LI
S

= There are two main advantages of a D latch.
— No more messing with one input for set and another input for reset!

— This latch has no "bad” input combinations to avoid. Any of the four
possible assignments to C and D are valid.

Clocks and synchronization

A clock is a special device that continuously outputs Os and 1s.

— The time it takes the clock to change from 1 to O and back to 1 is
called the clock period, or clock cycle time.

— The clock frequency is the inverse of the clock period. The unit of

measurement for frequency is the hertz. Clock Pulse Definition
ClOCk per]Od Positive Pulse Negative Pulse
H

ot -
LT P .

Positive Negative Negative Positive
Edge Edge Edge Edge

Clocks are often used to synchronize circuits.

— They generate a repeating, predictable pattern of Os and 1s that can
trigger certain events in a circuit, such as writing to a latch.

— |If several circuits share a common clock signal, they can coordinate
their actions with respect to one another.

This is similar to how humans use real clocks for synchronization.

10

D-type Flip-Flop Circuit

ta (V) @—
¢
Clock (Clk) @ ﬂ‘“ .
Symbol)
S oy DO e i
» i Gated SR Flip-flop
Clk @— Flip-flop Inverter
—® U Circuit

"he output of the flip flop would always change on every pulse applied to
this data input.

To avoid this an additional input called the “CLOCK” or “ENABLE” input
IS used to isolate the data input from the flip flop’s latching circuitry after
the desired data has been stored. The effect Is that D input condition is only
copied to the output Q when the clock input iIs active. This then forms the
basis of another sequential device called a D Flip Flop.

e sl

A positive edge-triggered D flip-flop

.
)
0
bt
A

0

)

|
7
)
o
i

= This positive edge-triggered D flip-flop includes two latches.

— The flip-flop output Q changes only after the positive edge of C.

— The change is based on the flip-flop input value D that was present at
the positive edge of the clock signal.

= A D flip-flop behaves like a D latch except for its positive edge-triggered
nature, which i1s not explicit in the table below.

x | No change
O] 0 (reset)
1 1 (set)

It can be seen from the
frequency waveforms
above, that by “feeding
back” the output from Q
to the input terminal D,
the output pulses at Q
have a frequency that
are exactly one half
(f/2) that of the input
clock frequency, (f,y)- In
other words the circuit
produces frequency
division as it now divides
the input frequency by a
factor of two (an octave)
as Q = 1 once every two
clock cycles.

Divide-by-2 Counter

Feedback Loop
.

Qutput Frequency
D‘ {} e .f+:'_'

Input Frequency
S

T T Input
Frequency

Output
g Frequency

Frequency = f=2

- -

D Flip Flops as Data Latches

A data latch can be used as a device to hold or remember the data present
on its data input, thereby acting a bit like a single bit memory device and IC’s
such as the TTL 74LS74 or the CMOS 4042 are available in Quad format
exactly for this purpose. By connecting together four, 1-bit data latches so
that all their clock inputs are connected together and are “clocked” at the
same time, a simple “4-bit” Data latch can be made as shown below.

4-bit Data Latch

4-Bit Data Output

I)]
A B ..

C
D Q J D Q J D Q J D Q J

FFA FFB FFC FFD
Clk Clk Clk

=

Clock
in

¢ ¢ ¢ 4-bit Latch

14 4-Bit Data Input

The JK Flip Flop

The Basic JK Flip-flop

Toggles on leading edge SR flip-flop
of clock signal |

i
oY,
Joe—| JK |—eqQ : TTeq
Hip-flop | :
Ck o—> Clké—t | |
| |
_ ! | N
K 0— —0Q ko ﬁ — e Q
b e o o |
mbol The Truth Table for the |K Function
. Input Output
Both the S and the R inputs of the J - G Description
previous SR bistable have now been - : ; ;’m y
. emory
replaced by two inputs called the J and K sameas | ; 1 1 alehn e
inputs, respectively after its inventor Jack e T
altc
Kilby. Then this equates to: J =S and K= R. - : o | ® e
1 0 0 1
SetQ» 1
1 0 1 1
toggle 1 1 0 1
action 1 1 1 0 Toggle

Flip-flop variations

= We can make different versions of flip-flops based on the D flip-flop, just
llIke we made different latches based on the S’R’ latch.

= The JK flip-flop has inputs that act like S and R, but JK = 11 complements
the flip-flop’s current state.

Q‘lext

No change

No change
0 (reset)
1 (set)

Q! current

- = O O X |-
- O = O X | X

= AT flip-flop can only maintain or complement its current state.

C T
T Q— Q-I'IE'?:t
0 x| Mo change
be ab 1 0] No :’:haﬂge
| 1 Q current

16

Characteristic tables

= The tables that we’ve made so far are Qt+1 Onoration
called characteristic tables. (t+1) P

— They show the next state Q(t+1) in 0 0 Reset
terms of the current state Q(t) and 1 1 Set
the inputs.

— For simplicity, the control input C 1s
usually not listed.

W

K1Q(t+1)| Operation
0] Qt) | Nochange
:
0
1

— Again, these tables don’t indicate
the positive edge-triggered nature
of the flip-flops.

0 Reset
1 Set
Q' (t) | Complement

- =2 O Ol

T|Q(t+1)] Operation
01 Q(t) |Nochange
11 Q' (t) | Complement

17

Characteristic equations

= We can also write characteristic equations, where the next state Q(t+1)
1s defined in terms of the current state Q(t) and the flip-flop inputs.

D]1Q(t+1)] Operation

0 0 Reset Q(t+1) =D

1 1 Set

J K |1Q(t+1)] Operation

O 0] Q(t) |Nochange

0 1 0 Reset Q(t+1) = K'Q(t) + JQ'(t)
1 0 T Set

1 1] Q(t) | Complement

T1Q(t+1)| Operation Q(t+1) = T'Q(t) + TQ’(t)
O] Qt) |Nochange =T @ Q(t)
11 Q'(t) | Complement

18

Flip-flop review

Flip-flops Characteristic tables Characteristic equations
— D Q— D]1Q(t+1)| Operation

N 0 0 Reset Q(t+1) =D
e °r 1] 1 [set

J KJ1Q(t+1)| Operation
— J Q— 0 0] Q(t) |Nochange
— C 0 1 0 Reset Q(t+1) = K'Q(t) + JQ'(t)
— K Qp— 1 0 T Set
1T 11 Q'(t) | Complement
— T Q— T1Q(t+1)| Operation
0| Q(t) |Nochange Q(t+1) =T @ Q(t)
— ¢ Qp- 1| Q(t) | Complement

20

Regisrers

Registers and counters

= Today we’ll see two common sequential devices, registers and counters.

— First we’ll study some different kinds of registers and discuss how to
build them. Several example circuits are also shown.

— Then we’ll talk about counters in more detail, looking at both some
implementations and applications.

= These are not only examples of sequential analysis and design, but also
real devices used in larger circuits, as we’ll see in the coming weeks.

21

Registers

» Flip-flops are limited because they can store only one bit.
— We had to use two flip-flops for most of our examples so far.

— Most computers work with integers and single-precision floating-point
numbers that are 32-bits long.

= Aregister is an extension of a flip-flop that can store multiple bits.
» Registers are commonly used as temporary storage in a processor.
— They are faster and more convenient than main memory.
— More registers can help speed up complex calculations.

» [ater we'll learn more about how registers are used in processors, and
some of the differences between registers and random-access memories

or RAM.

23

4-bit Parallel-in to Parallel-out Shift Register
4-bit Parallel Data Output

Qp

Q¢

i

Qs

il

1

— D D Q D D
FFA FFB FFC FFD
CLK CLK CLK CLK
al [|]|]
Clock
Py Pc Ps Pa

4-bit Parallel Data Input

A basic register

Basic registers are easy to build. We can store multiple bits |
just by putting a bunch of flip-flops together!

A 4-bit register from LogicWorks, Reg-4, 1s on the right, and

its internal implementation is below.

— This register uses D flip-flops, so it’s easy to store data '3'|-R
without worrying about flip-flop input equations.

— All the flip-flops share a common CLK and CLR signal.

24

CLK
— D3 Q3
— D2 Q2
— D1 1
— D0 Q0

Adding another operation

= The input D3-D0 is copied to the output Q3-Q0 on every clock cycle.
= How can we store the current value for more than one cycle?
= Let’s try to add a load input signal LD to the register.
— If LD = 0, the register keeps its current contents.
— If LD = 1, the register stores a new value, taken from inputs D3-DO0.

25

LD | Q(t+1)
0 Q(t)
1 | D,-D,

D3 D2 D1 DO
| | | |

CLR—
LD —
CLK—

Q3 Q2 ny Qo

26

L ead

Clock

C:

00 00 UU/00

Dr Mohamed A Berbar

A better parallel load

= Another idea i1s to modify the flip-flop D inputs and not the clock signal.

— When LD = 0 the flip-flop inputs are Q3-QO0, so each flip-flop keeps its
current value.

— When LD = 1 the flip-flop inputs are D3-D0, so this new value is loaded
into the register. MUX 2 - 1

27

Shift registers

A shift register "shifts” its output once every clock cycle. Sl is an input
that supplies a new bit to shift “into” the register.

Sl

D O +—D O
—C C C C
CLK ——= r 17
Qo0 Q1 02 Q3
Here is one example transition.
Present State | Input | Next State
Q0-Q3 S| Q0-Q3
0110 1 1011

QO(t+1) =5l
Q1(t+1) = QO(t)
Q2(t+1) = Q1(t)
Q3(t+1) = Q2(t)
Parallel Data Output
b 11 fe
Serial q Serial
|Dﬂztue:;b 1-uﬁ-aﬂ-n‘ﬁ-m _*O?‘?tpi‘
Pl

Dz

Parallel Dala Input

The current Q3 (0 in this example) will be lost on the next cycle.

28

Serial-in to Serial-out (SISO) Shift Register

Shift direction

I I — P QO(t+1) = SI
Sl DO D Q D O D O Q1(t+1) = QO(t)
g & g E Q2(t+1) = Q1(t)
CLK - : Jj 17 Q3(t+1) = Q2(t)

Qo af Q2 Q3

= The circuit and example make it look like the register shifts "right.”

Present QO-Q3 | S| | Next Q0-Q3
ABCD X XABC

= But it all depends on your interpretation of the bits. If you regard Q3 as
the most significant bit, then the register appears to shift in the opposite
direction!

Present Q3-Q0 | Sl | Next Q3-Q0
DCBA X CBAX

30

Parallel Data Output
= A
3 'D- Q 0

TMSB T TLSB

L)

. / q Serial
Serial o
Data —» - Ouatat
Input 1-bit 1-bit tpu

msa T TLSB

Dz D- Do

7

Parallel Daa Input

Basic Data Movement Through A Shift Register

Clock Pulse No QA QB QcC QD
0 0 0 0 0
1 1 0 0 0
2 0 1 0 0
3 0 0 1 0
4 0 0 0 1
5 0 0 0 0

Data

Input u_ll e
|
|
1 2 4 5
i R R EE R
o I | | I
:I 1 1 | I |
0 0 : 0
Qa L | | [|
IE 1 | :
I
a :Dr 0 - I | O
S | | [|
by I | I I
:ui 0 1 0 : 0
|
Qc = | | I |
|| | | | |
oy 0 1 0 0
. |
Qp I

Shift registers with parallel load

We can add a parallel load operation, just as we did for regular registers.

Serial — When LD = 0 the flip-flop inputs will be 51Q0Q1Q2, so the register will
shift on the next positive clock edge.

Parallel — When LD =1, the flip-flop inputs are DO-D3, and a new value is loaded

into the register on the next positive clock edge.

MUX2-1
DO DI MUX2-1 D2
I IV N N |
T [i
A y5 E
_ s S 3 s
D1 Q DIQ— —ID1Q — D10
5| —: DO Q0—| Do 01— Do 02— DO
D Q —D a D O D Q—
CLK —: .
Q0

S1

Shift registers in LogicWorks

= Here is a block symbol for the Shift Reg-4 from LogicWorks.

= |ts internal implementation is shown on the previous page, except the LD
input here 1s active-low instead.

— CLK

—<(LD

— Sl

—|D3 Q3 —
— D2 Q21—
— D1 Q1 —
— DD Q00—

32

Shift

Load

Seral

input E

Dy

[T 1

iy

[T]

[T]

33

UULH UH)LH LHHJU H,UKH

s

Clock

SHA 4
— Shift

— Load

— 3

Dﬂ Qu
D'I ﬂ'
DE QE
D: ﬂ:

(b) Symbol

S1

34

SO

No change
Shift left (down

(Shift right (up

Parallel load

So SO
S 5
i 4x1
T1° mux
Senial input 1
Z
Io 3
[
So
r S]
4x1
e 0O MUX
1
2
i =
1
r -
So
S
L—i 4x1
0 mMux
1
2
I3 3
1~
So
S
I 4ax1
MUX

Serial input
/3

Clock

Figure 2-9 Bidirectional shift register with parallel load.

35

Other types of shift reqgisters

Logical shifts — Standard shifts like we just saw. In the absence of a Sl input, O occupies
the vacant position.

— Left: 0110 -> 1100
— Right: 0110 -> 0011

Circular shifts (also called ring counters or rotates) — The shifted out bit wraps around to
the vacant position.

— Left: 1001 -> 0011
— Right: 1001 -> 1100

Switch-tail ring counter (aka Johnson counter) — Similar to the ring counter, but the serial
Input is the complement of the serial output.

— Left: 1001 -> 0010
— Right: 1001 -> 0100

Arithmetical shifts — Left shifting is the same as a logical shift. Right shifting however
maintains the MSB.

— Left: 0110 ->1100
— Right: 0110 ->0011; 1011 ->1101

36

Example

Consider a 4-Dbit register with the
following inputs

parallel data inputs ABCD =
0011

left serial input LSI =1 (This is
the serial input for a left shift.)
right serial input RSI =0 (This
IS the serial input for a right
shift.)

The three control inputs S,, S,,
S, operate as shown in the
table to the right.

Let the initial register content
be Q,QzQ.Q, = 0101

S2 | S1 | SO Operation

O | O | O |left shift

O | O 1 |circular left shift

0) 1 O | right shift

0) 1 1 | circular right shift
1 o) O | no change

1 o) 1 | parallel load

1 1 O | complement each bit
1 1 1 |setto 1111

Example

SO Operation
S2 |51 |80 Q| Q| RA| D
0) 0) 0 | left shift
0 1 0 1
0 0) 1 | circular left shift
0) 0 0)
0) 1 O | right shift
0) 0) 1
0] 1 1 | circular right shift
1 0)
0 1 o) O | no change
1 0| 0 1 o) 1 | parallel load
o) 1 1 1 1 O | complement each bit
1 0 1 1 1 1 |setto 1111
1 1 1 Other Information
Parallel Load | ABCD = 0011
0 0) 0) b
Ls1 1
11170 RSI 0

S1 | SO Operation
O | O | O |left shift
O| O 1 |circular left shift
0) 1 O | right shift
0) 1 1 | circular right shift
1 o) O | no change
1 o) 1 | parallel load
1 1 O | complement each bit

1

set to 1111

Other Information

5215150 (Qs| Q| Q| QR
O 1,01

00O

0|0 |1

0|10

1|00

0| 1|1

1|0 |1

1|1 |1

0|0 |0

1|10

Parallel Load | ABCD = 0011
LS1 1
RSI 0

S2 | S1 | SO Operation

O | O | O |left shift

O | O 1 | circular left shift

0) 1 O | right shift

0) 1 1 | circular right shift
1 o) O | no change

1 o) 1 | parallel load

1 1 O | complement each bit
1 1 1 |set to 1111

Other Information

52[51[50[Q] Q| Q] Q
O 10 |1

°ololol1]01]1

O | 0O |1

O | 1 | O

1 | 0| O

o |1 |1

1 | 0| 1

1 (1 | 1

O| 0| O

1 |1 | O

Parallel Load | ABCD = 0011
LS1 1
RSI 0

SO Operation
O | O | O |left shift
O| O 1 |circular left shift
0) 1 O | right shift
0) 1 1 | circular right shift
1 o) O | no change
1 o) 1 | parallel load
1 1 O | complement each bit
1 1 1 |set to 1111

Other Information

52151 S0 | Q| Q| QR | R
o|1]0 |1

°l1olol1]0]1

°cloltlol1]1]1

O | 1| O

1 | 0| O

o |1 |1

1 | 0 | 1

1 |1 |1

O 0| O

1 1|0

Parallel Load | ABCD = 0011
LS1 1
RSI 0

e

Exampl

S1 | SO Operation
O | O | O |left shift
O| O 1 |circular left shift
0) 1 O | right shift
0) 1 1 | circular right shift
1 0] O | no change
1 o) 1 | parallel load
1 1 O | complement each bit

1

set to 1111

Other Information

52151 S0|Qu| Q|| R
oO|1, 0|1

°1°1°11]011 |1

121t 0j1 11

1t 1°10/011 |1

1|00

0| 1 |1

1|0 |1

HERE

0| oo

1|10

Parallel Load | ABCD = 0011
LS1 1
RSI 0

S1 | SO Operation
O | O | O |left shift
O| O 1 |circular left shift
0) 1 O | right shift
0) 1 1 | circular right shift
1 o) O | no change
1 o) 1 | parallel load
1 1 O | complement each bit

1

set to 1111

Other Information

s2(51(50|Q,| Q| Q| Q
o|1]0 |1

°colol1]0f1]1

°cloltlol1]11

°/t]°lolo|1 1

t/ofelolo]1]1

o |1 |1

1 | 0 | 1

1 |1 |1

O 0| O

1 | 1|0

Parallel Load | ABCD = 0011
LS1 1
RSI 0

Example

S2 | S1 | SO Operation

O | O | O |left shift

O| O 1 |circular left shift

0) 1 O | right shift

0) 1 1 | circular right shift
1 o) O | no change

1 o) 1 | parallel load

1 1 O | complement each bit
1 1 1 |set to 1111

Other Information

s2(51(50|Q,| Q| Q| Q
o|1]0 |1

°Tolol1]0[1]1

°clolt|ol1]1]1

°/1]°lojo|1]1

SN CICIEEE

°/t1t|1]/0]0]1

1 | 0 | 1

1 |1 |1

O 0| O

1 | 1|0

Parallel Load | ABCD = 0011
LS1 1
RSI 0

SO Operation
S2 |51 |80 Q| Q| RA| D
0) 0) 0 | left shift
0 1 0 1
5 5 5 0 0 1 | circular left shift
1 O 1 1 0] 1 O | right shift
0) 0) 1
O 1 1 1 0] 1 1 | circular right shift
0O | 1|0 O 01 1 1 | O | O |no change
1100 O 01 1 1 | 0 | 1 |pardllel load
o) 1 1 1 O O 1 1 1 O | complement each bit
1 1 1 |set to 1111
121 tiojoj1]1
; z 1 Other Information
Parallel Load CD = 0011
T o 1o ABCD
LS1 1
11110 RST 0

52[51]50[Q.| Qs | Q| Qo - 500 _ h‘:”mﬂ""
eft shift
O|1 |01
oToTo (110 11 0 | 0| 1 |circular left shift
0 | 1 | 0 |right shift
1ol t|oj11]1 0 | 1 | 1 |circular right shift
°1t1°10/10(1 1 1 | 0| 0 [nochange
110170910/ 01111 1 | 0 | 1 [parallel load
o) 1 1 1 O O 1 1 1 O | complement each bit
tlol1t]|olol1l1 1 | 1 | 1 |setto1111
SRR AR Parallel L:;he": ;?:'—“2:'11
o0 | o0
LS1 1
1110 RST 0

Example

s2]51150| Q| Q@@ : : SOO _ hC:pcar'c\'rion
eft shift
O 1,01
o T o o 11011 O | O 1 |circular left shift
0) 1 O | right shift

o1 ° 1 O 1 1 1 0) 1 1 | circular right shift
0 ! 0 O O 1 1 1 o) O | no change
110170910/ 01111 1 | 0 | 1 [parallel load

o) 1 1 1 O O 1 1 1 O | complement each bit
1 0 1 olol1l1 1 1 1 |set to 1111

1 1 1 11111 Parallel Lo(:iher: ;?;m‘a:;:)nll
°1%1°%11]1]1]1 ol 1

. . 0 RSI 0

Example

S2 | S1 | SO Operation

O | O | O |left shift

O| O 1 |circular left shift

0) 1 O | right shift

0) 1 1 | circular right shift
1 o) O | no change

1 o) 1 | parallel load

1 1 O | complement each bit
1 1 1 |set to 1111

Other Information

s2[51(s0|Q,|Qs|Qc|Q

0 1 0 1
°191°%911/0/1 |1
°1°1 110|111
°11t1°1010|1 |1
L191°10(10(1 1
o1ty ti1/0/0|1
1e1rt1o0|0|1 1
11111
191911111
111°10/0(0|0

Parallel Load | ABCD = 0011
LS1 1
RSI 0

	Unit 7 �Sequential Circuits�(Flip Flop, Registers)
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Regisrers
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Other types of shift registers
	Example
	Example
	Example
	Example
	Example
	Example
	Example
	Example
	Example
	Example
	Example
	Example

