College of Computer and Information Sciences
Department of Computer Science

CSC 220: Computer Organization

Unit 9

Data Representation

Representations and algorithms

- Today we'll look at three different representations of signed numbers.
- The best one will result in the simplest and fastest operations.
- This is just like choosing a data structure in programming.
- We're mostly concerned with two particular operations.

1. Negating a signed number, or finding $-x$ from x.
2. Adding two signed numbers, or computing $x+y$.

Unsigned Representation

Represents positive integers. Unsigned representation of 157:

position	7	6	5	4	3	2	1	0
Bit pattern	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$
contribution	2^{7}			2^{4}	2^{3}	2^{2}		2^{0}

Addition is simple:
$1001+0101=1110$.

Advantages and disadvantages of unsigned notation

Advantages:
One representation of zero
Simple addition

Disadvantages
Negative numbers can not be represented.
The need of different notation to represent negative numbers.

Representation of negative numbers

Is a representation of negative numbers possible?
Unfortunately:
you can not just stick a negative sign in front of a binary
number. (it does not work like that)

There are three methods used to represent negative numbers.

- Signed magnitude notation
- One's complement notation
- Two's complement notation

Signed magnitude representation

- Humans use the signed-magnitude system. We add + or - to the front of a number to indicate its sign.
- We can do this in binary too, by adding a sign bit in front of our numbers.
- A 0 sign bit represents a positive number.
- A 1 sign bit represents a negative number.

$$
\left.\begin{array}{rl}
1101_{2} & =13_{10} \\
01101 & =+13_{10} \\
& \text { (a } 4 \text {-bit unsigned number) } \\
11101 & =-13_{10}
\end{array} \quad \text { (a negative number in 5-bit signed magnitude) }\right) \text { in 5-bit signed magnitude) }
$$

Example

Suppose 10011101 is a signed magnitude representation. The sign bit is 1, then the number represented is negative

position	7	6	5	4	3	2	1	0
Bit pattern	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$
contribution	$\mathbf{-}$			2^{4}	2^{3}	2^{2}		2^{0}

The magnitude is 0011101 with a value $2^{4}+2^{3}+2^{2}+2^{0}=29 \quad$ • Then the number represented by 10011101 is -29 .

Exercise 1

37_{10} has 00100101 in signed magnitude notation. Find the signed magnitude of -37_{10} ?

Using the signed magnitude notation find the 8-bit binary representation of the decimal value 24_{10} and -24_{10}.

Find the signed magnitude of -63 using 8-bit binary sequence?

Disadvantage of Signed Magnitude

Addition and subtractions are difficult.
Signs and magnitude, both have to carry out the required operation.
They are two representations of 0
$00000000=+0_{10}$
$10000000=-0_{10}$
To test if a number is 0 or not, the CPU will need to see whether it is 00000000 or 10000000 .
0 is always performed in programs.
Therefore, having two representations of 0 is inconvenient.

Signed Magnitude-Summary

In signed magnitude notation,

The most significant bit is used to represent the sign.
1 represents negative numbers
0 represents positive numbers.
The unsigned value of the remaining bits represent The magnitude.
Advantages:
Represents positive and negative numbers
Disadvantages:
two representations of zero,
Arithmetic operations are difficult.

Ones' complement representation

- In a different representation, ones' complement, we negate numbers by complementing each bit of the number.
- We keep the sign bits: 0 for positive numbers, and 1 for negative.
- The sign bit is complemented along with the rest of the bits.

1101_{2}	$=13_{10}$		(a 4 -bit unsigned number)
01101	$=+13_{10}$	(a positive number in 5-bit ones' complement)	
10010	$=-13_{10}$	(a negative number in 5-bit ones' complement)	
0100_{2}	$=4_{10}$		(a 4-bit unsigned number)
00100	$=+4_{10}$		(a positive number in 5-bit ones' complement)
11011	$=-4_{10}$	(a negative number in 5-bit ones' complement)	

Why is it called ones' complement?

- Complementing a single bit is equivalent to subtracting it from 1.

x	x^{\prime}	$1-x$
0	1	1
1	0	0

- Similarly, complementing each bit of an n-bit number is equivalent to subtracting that number from $2^{n}-1$.
- For example, we can negate the 5 -bit number 01101.
- Here $n=5$, and $2^{5}-1=11111_{2}$.
- Subtracting 01101 from 11111 yields 10010.

$$
\begin{array}{rrrrr}
1 & 1 & 1 & 1 & 1 \\
- & 0 & 1 & 1 & 0 \\
\hline 1 & 0 & 0 & 1 & 0
\end{array}
$$

Ones' complement addition

- There are two steps in adding ones' complement numbers.

1. Do unsigned addition on the numbers, including the sign bits.
2. Take the carry out and add it to the sum.

- This is simpler than signed magnitude addition, but still a bit tricky.

Two's Complement Notation

The most used representation for integers.
All positive numbers begin with 0 .
All negative numbers begin with 1.

One representation of zero
i.e. 0 is represented as 0000 using 4-bit binary sequence.

Two's complement representation

- Our final idea is two's complement. To negate a number, we complement each bit (just as for ones' complement) and then add 1.

$1101_{2}=13_{10}$	(a 4-bit unsigned number)
$01101=+13_{10}$	(a positive number in 5-bit two's complement)
$10010=-13_{10}$	(a negative number in 5-bit ones' complement)
$10011=-13_{10}$	(a negative number in 5-bit two's complement)
$0100{ }_{2}=4_{10}$	(a 4-bit unsigned number)
$00100=+4_{10}$	(a positive number in 5-bit two's complement)
$11011=-4_{10}$	(a negative number in 5-bit ones' complement)
$11100=-4_{10}$	(a negative number in 5-bit two's complement)

More about two's complement

- Another way to negate an n-bit two's complement number is to subtract it from 2^{n}.
- You can also complement all of the bits to the left of the rightmost 1.

$$
\begin{array}{lll}
01101 & =+13_{10} & \text { (a positive number in two's complement) } \\
10011 & =-13_{10} & \text { (a negative number in two's complement) } \\
00100 & =+4_{10} & \text { (a positive number in two's complement) } \\
11100 & =-4_{10} & \text { (a negative number in two's complement) }
\end{array}
$$

Two's complement addition

- Negating a two's complement number takes a bit of work, but addition is much easier than with the other two systems.
- To find $A+B$, you just have to do unsigned addition on A and B (including their sign bits), and ignore any carry out.
- For example, we can compute $0111+1100$, or (+7) + (-4).
- First add $0111+1100$ as unsigned numbers.

$$
\begin{array}{r}
0111 \\
+\quad 1100 \\
\hline 10011
\end{array}
$$

- Ignore the carry out (1). The answer is 0011 (+3).

Another two's complement example

- To further convince you that this works, let's try adding two negative numbers $-1101+1110$, or $(-3)+(-2)$ in decimal.
- Adding the numbers gives 11011.

- Dropping the carry out (1) leaves us with the answer, 1011 (-5).

Advantages of Two's Complement Notation

It is easy to add two numbers.
0001 +1 1000-8
$\frac{0101+5}{0110+6} \quad \frac{0101+5}{+}$

Subtraction can be easily performed.
Multiplication is just a repeated addition.
Division is just a repeated subtraction
Two's complement is widely used in $A L U_{19}$

Example- 10101 in Two's Complement

The most significant bit is 1 , hence it is a negative number.

Corresponding + number is $01011=8+2+1=11$ the result is then -11 .

An algebraic explanation

- For n-bit numbers, the negation of B in two's complement is $2^{n}-B$. (This was one of the alternate ways of negating a two's complement number.)

$$
\begin{aligned}
A-B & =A+(-B) \\
& =A+\left(2^{n}-B\right) \\
& =(A-B)+2^{n}
\end{aligned}
$$

- If $A \geq B$, then $(A-B)$ has to be positive, and the 2^{n} represents a carry out of 1 . Discarding this carry out leaves us with the desired result, ($A-B$).
- If $A<B$, then $(A-B)$ must be negative, and $2^{n}-(A-B)$ corresponds to the correct result -(A - B) in two's complement form.

Comparing the signed number systems

- Here are all the 4 -bit numbers in the different systems.
- Positive numbers are the same in all three representations.
- There are two ways to represent 0 in signed magnitude and ones' complement. This makes things more complicated.
- In two's complement, there is one more negative number than positive number. Here, we can represent -8 but not +8 .
- However, two's complement is preferred because it has only one 0 , and its addition algorithm is the simplest.

Decimal	SM	1 C	2 C
7	0111	0111	0111
6	0110	0110	0110
5	0101	0101	0101
4	0100	0100	0100
3	0011	0011	0011
2	0010	0010	0010
1	0001	0001	0001
0	0000	0000	0000
-0	1000	1111	-
-1	1001	1110	1111
-2	1010	1101	1110
-3	1011	1100	1101
-4	1100	1011	1100
-5	1101	1010	1011
-6	1110	1001	1010
-7	1111	1000	1001
-8	-	-	1000

Ranges of the signed number systems

- How many negative and positive numbers can be represented in each of the different four-bit systems on the previous page?

	Unsigned	SM	1C	2C
Smallest	$0000(0)$	$1111(-7)$	$1000(-7)$	$1000(-8)$
Largest	$1111(15)$	$0111(+7)$	$0111(+7)$	$0111(+7)$

- The ranges for general n-bit numbers (including the sign bit) are below.

	Unsigned	SM	$1 C$	$2 C$
Smallest	0	$-\left(2^{n-1}-1\right)$	$-\left(2^{n-1}-1\right)$	-2^{n-1}
Largest	$2^{n}-1$	$+\left(2^{n-1}-1\right)$	$+\left(2^{n-1}-1\right)$	$+\left(2^{n-1}-1\right)$

Representation example

- Convert 110101 to decimal, assuming several different representations.

Since the sign bit is 1 , this is a negative number. The easiest way to find the magnitude is to negate it.
(a) signed magnitude format

Negating the original number, 110101, gives 010101, which is +21 in decimal. So 110101 must represent -21.
(b) ones' complement

Negating 110101 in ones' complement yields $001010=+10_{10}$, so the original number must have been -10_{10}.
(c) two's complement

Negating 110101 in two's complement gives $001011=11_{10}$, which means $110101=-11_{10}$.

- The most important point is that a binary value has different meanings depending on which number representation is assumed.

Making a subtraction circuit

- Here is the four-bit unsigned addition circuit \square

- We could build a subtraction circuit like this too.
- An alternative solution is to re-use this unsigned adder by converting subtraction operations into addition.
- To subtract B from A, we can add the negation of B to A.

$$
A-B=A+(-B)
$$

A two's complement subtraction circuit

- Our circuit has to add A to the two's complement negation of B.
- We can complement B by inverting the input bits B3 B2 B1 B0.
- We can add by setting the carry in to 1 instead of 0 .

- The sum is $A+\left(B^{\prime}+1\right)$, which is the two's complement subtraction $A-B$.
- Remember that A3, B3 and S3 here are actually sign bits.

Small differences

- There are only two differences between an adder and subtractor circuit.
- The subtractor has to negate B3 B2 B1 B0.
- The subtractor sets the initial carry in to 1 , instead of 0 .
- It's not hard to make one circuit that does both addition and subtraction.

An adder-subtractor circuit

- XOR gates let us selectively complement the B input.

$$
X \oplus 0=X \quad X \oplus 1=X^{\prime}
$$

- When Sub $=0$, the XOR gates output B3 B2 B1 B0 and the carry in is 0 . The adder output will be $A+B+0$, or just $A+B$.
- When Sub = 1, the XOR gates output B3' B2' B1' B0' and the carry in is 1 . Thus, the adder output will be a two's complement subtraction, A - B.

Signed overflow

- With 4-bit two's complement numbers, the largest representable decimal value is +7 , and the smallest is -8 .
- What if you try to compute $4+5$, or (-4) + (-5)?
- Signed overflow is very different from unsigned overflow.
- The carry out is not enough to detect overflow. In the example on the left, the carry out is 0 but there is overflow.

Detecting signed overflow

- The easiest way to detect signed overflow is to look at all the sign bits.

$$
\begin{array}{r|rll}
0 & 1 & 0 & 0 \\
0 & 1 & 0 & 1 \\
+ & 1+4) \\
\hline 0 & 1 & 0 & 0
\end{array} \quad \begin{array}{r}
(+5) \\
(-7)
\end{array}
$$

1	1	0	0	
1	0	1	(-4)	
+	$+(-5)$			
1	0	1	1	1

- Overflow occurs only in the two situations above. 1. If you add two positive numbers and get a negative result. 2. If you add two negative numbers and get a positive result.
- Overflow can never occur when you add a positive number to a negative number. (Do you see why?)

Overflow

Example1:

$0110101_{2}\left(=53_{10}\right)$
$\begin{aligned}+0101010_{2} & \left(=42_{10}\right) \\ \mathbf{1 0 1 1 1 1 ~}_{2} & \left(=-33_{10}\right)\end{aligned}$
Example3:

$\left(=53_{10}\right)$
$\underline{+1101010}_{2}\left(=-22_{10}\right)$
$0011111_{2}\left(=31_{10}\right)$

Example2:

$1010101_{2}\left(=-43_{10}\right)$
$+{1001010_{2}}_{2}\left(=-54_{10}\right)$ $0011111_{2}\left(=31_{10}\right)$

Example4:

Pffefor
$0010101_{2}\left(=21_{10}\right)$
$+{ }^{+0101010_{2}}\left(=42_{10}\right)$
$0111111_{2}\left(=63_{10}\right)$

Sign extension

- Decimal numbers are assumed to have an infinite number of $0 s$ in front of them, which helps in "lining up" values for arithmetic operations.

$$
\begin{array}{r}
225 \\
+\quad 006 \\
\hline 231
\end{array}
$$

- You need to be careful in extending signed binary numbers, because the leftmost bit is the sign and not part of the magnitude.
- To extend a signed binary number, you have to replicate the sign bit. If you just add 0 s in front, you might accidentally change a negative number into a positive one!
- For example, consider going from 4 -bit to 8 -bit numbers.

$(+5)$	$0101 \longrightarrow 0000101$
(-4)	$1100 \longrightarrow 5)$

Summary

- Data representations are all-important!
- A good representation for negative numbers can make subtraction hardware much simpler to design.
- Using two's complement, it's easy to build a single circuit for both addition and subtraction.
- Working with signed numbers involves several issues.
- Signed overflow is very different from the unsigned overflow we talked about last week.
- Sign extension is needed to properly "lengthen" negative numbers.

