

College of Computer and Information Sciences Department of Computer Science

CSC 220: Computer Organization

Unit 9

Data Representation

Representations and algorithms

- Today we'll look at three different representations of signed numbers.
 - The best one will result in the simplest and fastest operations.
 - This is just like choosing a data structure in programming.
- We're mostly concerned with two particular operations.
 - 1. Negating a signed number, or finding -x from x.
 - 2. Adding two signed numbers, or computing x + y.

Unsigned Representation

- Represents positive integers. •
- Unsigned representation of 157: •

position	7	6	5	4	3	2	1	0
Bit pattern	1	0	0	1	1	1	0	1
contribution	27			24	2 ³	2 ²		2 ⁰

Addition is simple: •

 $1 \ 0 \ 0 \ 1 \ + \ 0 \ 1 \ 0 \ 1 = \ 1 \ 1 \ 1 \ 0.$

Advantages and disadvantages of unsigned notation

Advantages:

One representation of zero Simple addition

Disadvantages

Negative numbers can not be represented. The need of different notation to represent negative numbers.

Representation of negative numbers

Is a representation of negative numbers possible? Unfortunately:

you can not just stick a negative sign in front of a binary number. (it does not work like that)

There are three methods used to represent negative numbers.

- Signed magnitude notation
- One's complement notation
- Two's complement notation

Signed magnitude representation

- Humans use the signed-magnitude system. We add + or to the front of a number to indicate its sign.
- We can do this in binary too, by adding a sign bit in front of our numbers.
 - A 0 sign bit represents a positive number.
 - A 1 sign bit represents a negative number.

1101₂ = 13₁₀ (a 4-bit unsigned number)

- 0 1101 = +13₁₀ (a positive number in 5-bit signed magnitude)
- 1 1101 = -13₁₀ (a negative number in 5-bit signed magnitude)
- $0100_2 = 4_{10}$ (a 4-bit unsigned number) $00100 = +4_{10}$ (a positive number in 5-bit signed magnitude) $10100 = -4_{10}$ (a negative number in 5-bit signed magnitude)

Example

- Suppose 10011101 is a signed magnitude representation. •
- The sign bit is 1, then the number represented is negative •

position	7	6	5	4	3	2	1	0
Bit pattern	1	0	0	1	1	1	0	1
contribution	I			24	2 ³	2 ²		2 ⁰

- The magnitude is 0011101 with a value $2^4+2^3+2^2+2^0=29$
 - Then the number represented by 10011101 is -29. •

Exercise 1

 37_{10} has 0010 0101 in signed magnitude notation. Find the signed magnitude of -37_{10} ?

Using the signed magnitude notation find the 8-bit binary representation of the decimal value 24_{10} and -24_{10} .

Find the signed magnitude of –63 using 8-bit binary sequence?

Disadvantage of Signed Magnitude

Addition and subtractions are difficult.

Signs and magnitude, both have to carry out the required operation.

They are two representations of 0

```
0000000 = + 0_{10}
```

 $1000000 = -0_{10}$

To test if a number is 0 or not, the CPU will need to see whether it is 00000000 or 10000000.

0 is always performed in programs.

Therefore, having two representations of 0 is inconvenient.

Signed Magnitude-Summary

In signed magnitude notation,

The most significant bit is used to represent the sign.

- 1 represents negative numbers
- 0 represents positive numbers.

The unsigned value of the remaining bits represent The magnitude.

Advantages:

Represents positive and negative numbers

Disadvantages:

two representations of zero,

Arithmetic operations are difficult.

Ones' complement representation

- In a different representation, ones' complement, we negate numbers by complementing each bit of the number.
- We keep the sign bits: 0 for positive numbers, and 1 for negative.
- The sign bit is complemented along with the rest of the bits.

$1101_2 = 13_{10}$	(a 4-bit unsigned number)
1101 = +13 ₁₀	(a positive number in 5-bit ones' complement)
0010 = -13 ₁₀	(a negative number in 5-bit ones' complement)
0100 ₂ = 4 ₁₀	(a 4-bit unsigned number)
$0100 = +4_{10}$	(a positive number in 5-bit ones' complement)
$1011 = -4_{10}$	(a negative number in 5-bit ones' complement)
$0100_2 = 4_{10}$ $0100 = +4_{10}$	(a 4-bit unsigned number) (a positive number in 5-bit ones' complemer

Why is it called ones' complement?

Complementing a single bit is equivalent to subtracting it from 1.

- Similarly, complementing each bit of an n-bit number is equivalent to subtracting that number from 2ⁿ-1.
- For example, we can negate the 5-bit number 01101.
 - Here n=5, and $2^{5}-1 = 11111_{2}$.
 - Subtracting 01101 from 11111 yields 10010.

Ones' complement addition

- There are two steps in adding ones' complement numbers.
 - 1. Do unsigned addition on the numbers, *including* the sign bits.
 - 2. Take the carry out and add it to the sum.

	0111	(+7)	0011	(+3)
+	1011	+ (-4)	+ 0010	+ (+2)
1	0010		00101	
	0010		0101	
+	1		+ 0	
	0011	(+3)	0101	(+5)

This is simpler than signed magnitude addition, but still a bit tricky.

Two's Complement Notation

The most used representation for integers. All positive numbers begin with 0. All negative numbers begin with 1.

One representation of zero

i.e. 0 is represented as 0000 using 4-bit binary sequence.

Two's complement representation

 Our final idea is two's complement. To negate a number, we complement each bit (just as for ones' complement) and then add 1.

1101₂ = 13₁₀ (a 4-bit unsigned number)

- 0 1101 = +13₁₀ (a positive number in 5-bit two's complement)
- 1 0010 = -13₁₀ (a negative number in 5-bit *ones*' complement)
- 1 0011 = -13₁₀ (a negative number in 5-bit two's complement)

$0100_2 = 4_{10}$	(a 4-bit unsigned number)	
0 0 4 0 0	/ ··· · · · · · · · · ·	

- 0 0100 = +4₁₀ (a positive number in 5-bit two's complement)
- **1** 1011 = -4₁₀ (a negative number in 5-bit *ones*' complement)
- **1** 1100 = -4₁₀ (a negative number in 5-bit two's complement)

More about two's complement

 Another way to negate an n-bit two's complement number is to subtract it from 2ⁿ.

100000		10000
- 01101	(+13 ₁₀)	- 00100 (+4 ₁₀)
10011	(-13 ₁₀)	11100 (-4 ₁₀)

You can also complement all of the bits to the left of the rightmost 1.

0110 <mark>1</mark>	= +13 ₁₀	(a positive number in two's complement)
1001 <mark>1</mark>	= -13 ₁₀	(a negative number in two's complement)

- 00100 = +4₁₀ (a positive number in two's complement)
- 11100 = -4₁₀ (a negative number in two's complement)

Two's complement addition

- Negating a two's complement number takes a bit of work, but addition is much easier than with the other two systems.
- To find A + B, you just have to do unsigned addition on A and B (including their sign bits), and ignore any carry out.
- For example, we can compute 0111 + 1100, or (+7) + (-4).
 - First add 0111 + 1100 as unsigned numbers.

0 1 1 1 + 1 1 0 0 1 0 0 1 1

- Ignore the carry out (1). The answer is 0011 (+3).

Another two's complement example

- To further convince you that this works, let's try adding two negative numbers—1101 + 1110, or (-3) + (-2) in decimal.
- Adding the numbers gives 11011.

```
1 1 0 1
+ 1 1 1 0
1 1 0 1 1
```

Dropping the carry out (1) leaves us with the answer, 1011 (-5).

Advantages of Two's Complement Notation

Subtraction can be easily performed. Multiplication is just a repeated addition. Division is just a repeated subtraction Two's complement is widely used in *ALU* 19

Example-10101 in Two's Complement

The most significant bit is 1, hence it is a negative number.

Corresponding + number is 01011 = 8 + 2 + 1 = 11the result is then -11.

An algebraic explanation

 For n-bit numbers, the negation of B in two's complement is 2ⁿ - B. (This was one of the alternate ways of negating a two's complement number.)

$$A - B = A + (-B)$$

= A + (2ⁿ - B)
= (A - B) + 2ⁿ

- If A ≥ B, then (A B) has to be positive, and the 2ⁿ represents a carry out of 1. Discarding this carry out leaves us with the desired result, (A - B).
- If A < B, then (A B) must be negative, and 2ⁿ (A B) corresponds to the correct result -(A - B) in two's complement form.

Comparing the signed number systems

- Here are all the 4-bit numbers in the different systems.
- Positive numbers are the same in all three representations.
- There are two ways to represent 0 in signed magnitude and ones' complement. This makes things more complicated.
- In two's complement, there is one more negative number than positive number. Here, we can represent -8 but not +8.
- However, two's complement is preferred because it has only one 0, and its addition algorithm is the simplest.

Decimal	SM	1C	2C
7	0111	0111	0111
6	0110	0110	0110
5	0101	0101	0101
4	0100	0100	0100
3	0011	0011	0011
2	0010	0010	0010
1	0001	0001	0001
0	0000	0000	0000
-0	1000	1111	-
-1	1001	1110	1111
-2	1010	1101	1110
-3	1011	1100	1101
-4	1100	1011	1100
-5	1101	1010	1011
-6	1110	1001	1010
-7	1111	1000	1001
-8	—	-	1000

Ranges of the signed number systems

 How many negative and positive numbers can be represented in each of the different four-bit systems on the previous page?

	Unsigned	SM	1C	2C	
Smallest	0000 (0)	1111 (-7)	1000 (-7)	1000 (-8)	
Largest	1111 (15)	0111 (+7)	0111 (+7)	0111 (+7)	

The ranges for general n-bit numbers (including the sign bit) are below.

	Unsigned	SM	1C	2C
Smallest	0	-(2 ^{<i>n</i>-1} -1)	-(2 ^{<i>n</i>-1} -1)	-2 ⁿ⁻¹
Largest	2 ^{<i>n</i>} -1	+(2 ^{<i>n</i>-1} -1)	+(2 ^{<i>n</i>-1} -1)	+(2 ^{<i>n</i>-1} -1)

Convert 110101 to decimal, assuming several different representations.

Since the sign bit is 1, this is a negative number. The easiest way to find the magnitude is to negate it.

(a) signed magnitude format

Negating the original number, 110101, gives 010101, which is +21 in decimal. So 110101 must represent -21.

(b) ones' complement

Negating 110101 in ones' complement yields $001010 = +10_{10}$, so the original number must have been -10_{10} .

(c) two's complement

Negating 110101 in two's complement gives $001011 = 11_{10}$, which means $110101 = -11_{10}$.

 The most important point is that a binary value has different meanings depending on which number representation is assumed.

Making a subtraction circuit

Here is the four-bit unsigned addition circuit

- We could build a subtraction circuit like this too.
- An alternative solution is to re-use this unsigned adder by converting subtraction operations into addition.
- To subtract B from A, we can add the negation of B to A.

$$A - B = A + (-B)$$

A two's complement subtraction circuit

- Our circuit has to add A to the two's complement negation of B.
 - We can complement B by inverting the input bits B3 B2 B1 B0.
 - We can add by setting the carry in to 1 instead of 0.

- The sum is A + (B' + 1), which is the two's complement subtraction A B.
- Remember that A3, B3 and S3 here are actually sign bits.

Small differences

- There are only two differences between an adder and subtractor circuit.
 - The subtractor has to negate B3 B2 B1 B0.
 - The subtractor sets the initial carry in to 1, instead of 0.
- It's not hard to make one circuit that does both addition and subtraction.

XOR gates let us selectively complement the B input.

$$X \oplus 0 = X$$
 $X \oplus 1 = X'$

- When Sub = 0, the XOR gates output B3 B2 B1 B0 and the carry in is 0. The adder output will be A + B + 0, or just A + B.
- When Sub = 1, the XOR gates output B3' B2' B1' B0' and the carry in is 1. Thus, the adder output will be a two's complement subtraction, A - B.

Signed overflow

- With 4-bit two's complement numbers, the largest representable decimal value is +7, and the smallest is -8.
- What if you try to compute 4 + 5, or (-4) + (-5)?

0100	(+4)	1100 (-4)	
+ 0101	+ (+5)	+ 1011 + (-5)	
01001	(-7)	10111 (+7)	

- Signed overflow is very different from unsigned overflow.
 - The carry out is not enough to detect overflow. In the example on the left, the carry out is 0 but there *is* overflow.

The easiest way to detect signed overflow is to look at all the sign bits.

	010	0	(+4)		1	1 (0 0	(-4)
+	010	1	+ (+5)	 +	1	0 ′	11	 + (-5)
0	100	1	(-7)	1	0	1 '	11	 (+7)

- Overflow occurs only in the two situations above.
 1. If you add two *positive* numbers and get a *negative* result.
 2. If you add two *negative* numbers and get a *positive* result.
- Overflow can never occur when you add a positive number to a negative number. (Do you see why?)

Overflow

Example1: 0100000 0110101 ₂ +0101010 ₂ 1011111 ₂	$(= 53_{10})$ $(= 42_{10})$ $(=-33_{10})$	Example2: 1000000 1010101 ₂ +1001010 ₂ 0011111 ₂	$(=-43_{10})$ $(=-54_{10})$ $(= 31_{10})$
Example3: 1100000 0110101 ₂ +1101010 ₂ 0011111 ₂	$(= 53_{10})$ $(=-22_{10})$ $(= 31_{10})$	Example4: 0000000 00101012 +01010102 01111112	$(= 21_{10})$ $(= 42_{10})$ $(= 63_{10})$

 Decimal numbers are assumed to have an infinite number of 0s in front of them, which helps in "lining up" values for arithmetic operations.

> 225 +006 231

- You need to be careful in extending signed binary numbers, because the leftmost bit is the sign and not part of the magnitude.
- To extend a signed binary number, you have to replicate the sign bit. If you just add 0s in front, you might accidentally change a negative number into a positive one!
- For example, consider going from 4-bit to 8-bit numbers.

Summary

- Data representations are all-important!
 - A good representation for negative numbers can make subtraction hardware much simpler to design.
 - Using two's complement, it's easy to build a single circuit for both addition and subtraction.
- Working with signed numbers involves several issues.
 - Signed overflow is very different from the unsigned overflow we talked about last week.
 - Sign extension is needed to properly "lengthen" negative numbers.

