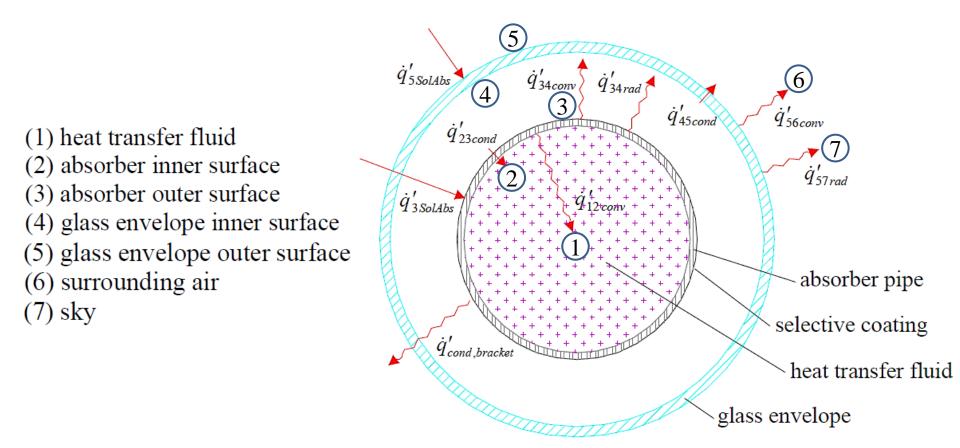




# ME 476 Solar Energy

# UNIT FIVE THERMAL ANALYSIS OF SOLAR COLLECTORS



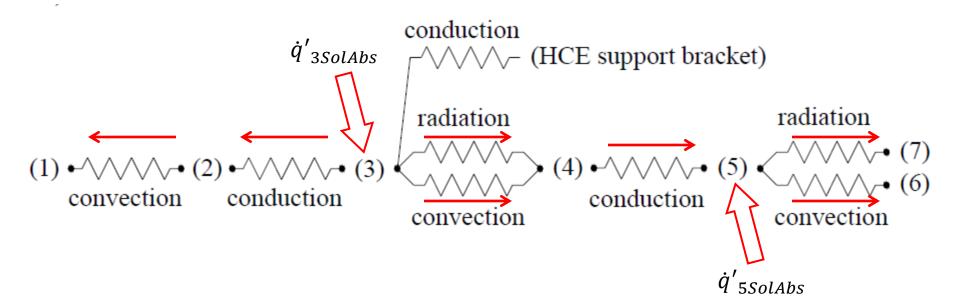



- The objective of this unit is to formulate a simplified analysis of the useful energy gain of a parabolic trough collector.
- This analysis will be only one-dimensional.
- It will look at the heat loss and energy gain in the radial direction only.
  - The temperature of the fluid will be assumed to be constant along the absorber tube.
- This analysis is suitable for a short section of a parabolic trough receiver.





#### **ENERGY GAIN AND LOSS MECHANISMS**

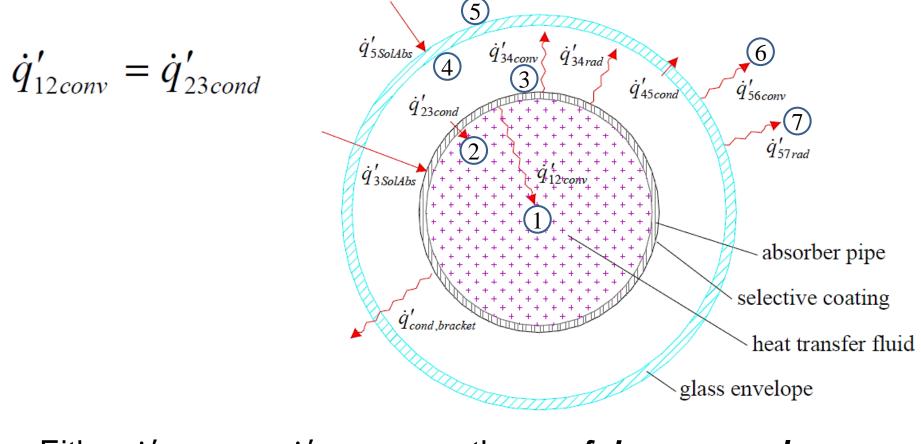



• The prime symbol ( ') denotes "per unit length"





## THERMAL RESISTANCE MODEL



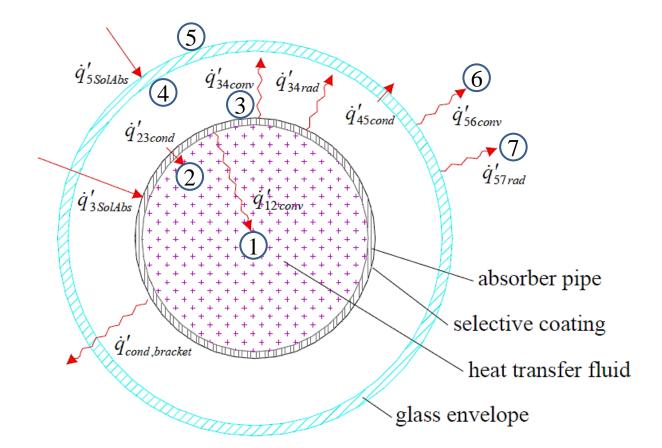

- (1) heat transfer fluid
  (2) absorber inner surface
  (3) absorber outer surface
  (4) glass envelope inner surface
- (5) glass envelope outer surface
- (6) surrounding air
- (7) sky





#### **ENERGY BALANCE ON SURFACE (2)**



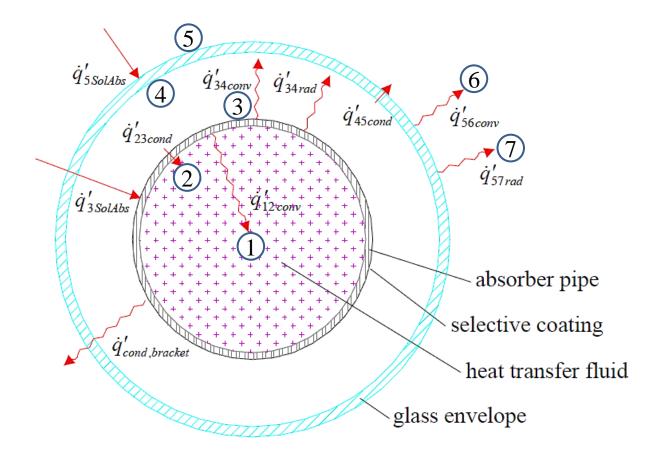

• Either  $\dot{q}'_{12conv}$  or  $\dot{q}'_{23cond}$  are the **useful energy gain**.





#### **ENERGY BALANCE ON SURFACE (3)**

$$\dot{q}'_{3SolAbs} = \dot{q}'_{34conv} + \dot{q}'_{34rad} + \dot{q}'_{23cond} + \dot{q}'_{cond,bracket}$$

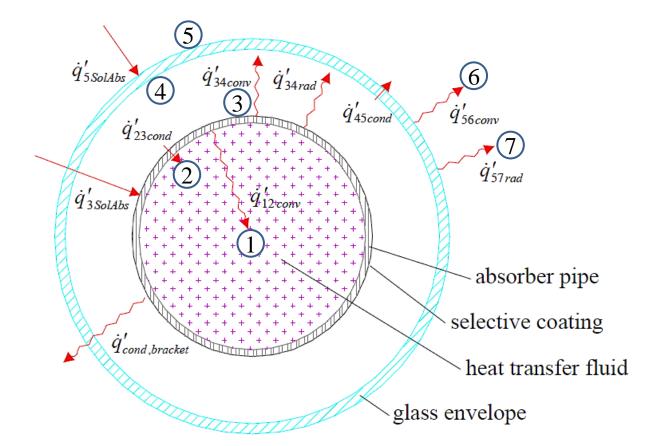







### **ENERGY BALANCE ON SURFACE (4)**

$$\dot{q}'_{34conv} + \dot{q}'_{34rad} = \dot{q}'_{45cond}$$

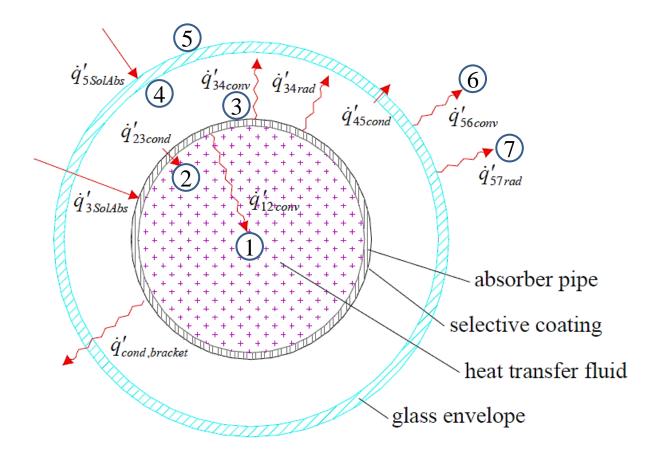







#### **ENERGY BALANCE ON SURFACE (5)**

$$\dot{q}'_{45cond} + \dot{q}'_{5SolAbs} = \dot{q}'_{56conv} + \dot{q}'_{57rad}$$








#### **HEAT LOSS**

$$\dot{q}'_{HeatLoss} = \dot{q}'_{56conv} + \dot{q}'_{57rad} + \dot{q}'_{cond,bracket}$$







## **SUMMARY OF EQUATIONS**

$$\begin{split} \dot{q}'_{12conv} &= \dot{q}'_{23cond} \\ \dot{q}'_{3SolAbs} &= \dot{q}'_{34conv} + \dot{q}'_{34rad} + \dot{q}'_{23cond} + \dot{q}'_{cond,bracket} \\ \dot{q}'_{34conv} &+ \dot{q}'_{34rad} = \dot{q}'_{45cond} \\ \dot{q}'_{45cond} &+ \dot{q}'_{5SolAbs} = \dot{q}'_{56conv} + \dot{q}'_{57rad} \\ \dot{q}'_{HeatLoss} &= \dot{q}'_{56conv} + \dot{q}'_{57rad} + \dot{q}'_{cond,bracket} \end{split}$$

 Each term has to be determined from the principles of heat transfer.





## **Convection Heat Transfer Between the Fluid and Absorber**

$$\dot{q}'_{12\text{conv}} = h_1 D_2 \pi (T_2 - T_1)$$
  
 $h_1 = N u_{D2} \frac{k_1}{D_2}$ 

- $h_1$  = HTF convection heat transfer coefficient at  $T_1$  (W/m<sup>2</sup>-K)
- $D_2$  = inside diameter of the absorber pipe (m)
- $T_1 = mean (bulk)$  temperature of the HTF (°C)
- $T_2$  = inside surface temperature of absorber pipe (°C)
- $Nu_{D2}$  = Nusselt number based on  $D_2$ 
  - $k_1$  = thermal conductance of the HTF at  $T_1$  (W/m-K)





# Convection Heat Transfer Between the Fluid and Absorber TURBULENT FLOW

$$Nu_{D2} = \frac{f_2 / 8 (\text{Re}_{D2} - 1000) \text{Pr}_1}{1 + 12.7 \sqrt{f_2 / 8} (\text{Pr}_1^{2/3} - 1)} (\frac{\text{Pr}_1}{\text{Pr}_2})^{0.11} \qquad f_2 = (1.82 \log_{10} (\text{Re}_{D2}) - 1.64)^{-2}$$

- $f_2$  = friction factor for the inner surface of the absorber pipe
- $Pr_1$  = Prandtl number evaluated at the HTF temperature,  $T_1$
- $Pr_2 = Prandtl number evaluated at the absorber inner surface temperature, T_2$
- This correlation was developed by Gnielinski.
- It is valid for  $0.5 < Pr_1 < 2000$  and  $2300 < Re_{D2} < 5x10^6$

### LAMINAR FLOW

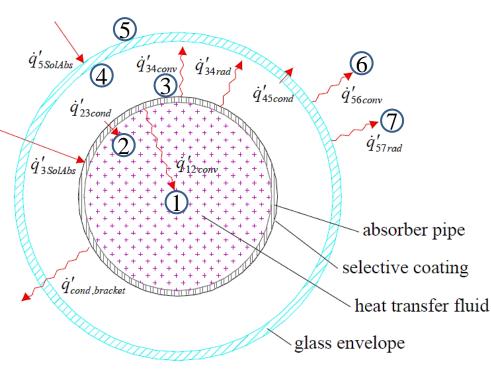
• Nusselt number is always equal to 4.36





## **Conduction Heat Transfer through the Absorber Wall**

$$\dot{q}'_{23cond} = 2\pi k_{23} (T_2 - T_3) / \ln(D_3 / D_2)$$


- $k_{23}$  = absorber thermal conductance at the average absorber temperature  $(T_2+T_3)/2$  (W/m-K)
- $T_2$  = absorber inside surface temperature (K)
- $T_3$  = absorber outside surface temperature (K)
- $D_2$  = absorber inside diameter (m)
- $D_3$  = absorber outside diameter (m)





## Heat Transfer from the Absorber to the Glass Envelope

- There are two possible mechanisms for heat transfer:
  - Convection
  - Radiation
- If the receiver is under vacuum, convection losses are negligible.
- If the receiver is filled with all convection losses must be calculated.







# Heat Transfer from the Absorber to the Glass Envelope

## **CONVECTION FROM AIR-FILLED ANNULUS**

$$q'_{34conv} = \frac{2.425k_{34}(T_3 - T_4)(\Pr Ra_{D3}/(0.861 + \Pr_{34}))}{(1 + (D_3/D_4)^{3/5})^{5/4}}$$
$$Ra_{D3} = \frac{g\beta(T_3 - T_4)D_3^{-3}}{\alpha\nu} \qquad \beta = \frac{1}{T_{avg}}$$

- $k_{34}$  = thermal conductance of annulus gas at  $T_{34}$  (W/m-K)
- $T_3$  = outer absorber surface temperature (°C)
- $T_4$  = inner glass envelope surface temperature (°C)
- $D_3 = outer absorber diameter (m)$
- $D_4$  = inner glass envelope diameter (m)
- $Pr_{34}$  = Prandtl number
- $Ra_{D3}$  = Rayleigh number evaluated at  $D_3$
- $\beta$  = volumetric thermal expansion coefficient (1/K)
- $T_{34}$  = average temperature,  $(T_3 + T_4)/2$  (°C)

All physical properties are evaluated at the average temperature (T3 + T4)/2





# Heat Transfer from the Absorber to the Glass Envelope

RADIATION

$$\dot{q}'_{34rad} = \frac{\sigma \pi D_3 \left( T_3^4 - T_4^4 \right)}{\left( \frac{1}{\varepsilon_3} + \left( 1 - \varepsilon_4 \right) D_3 / \left( \varepsilon_4 D_4 \right) \right)}$$

- $\sigma$  = Stefan-Boltzmann constant (W/m<sup>2</sup>-K<sup>4</sup>)
- $D_3$  = outer absorber diameter (m)
- $D_4$  = inner glass envelope diameter (m)
- $T_3$  = outer absorber surface temperature (K)
- $T_4$  = inner glass envelope surface temperature (K)
- $\varepsilon_3$  = Absorber selective coating emissivity
- $\epsilon_4$  = glass envelope emissivity

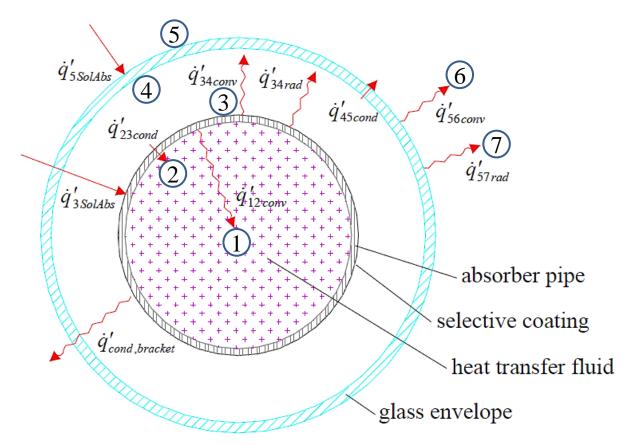




## **Conduction Heat Transfer through the Glass Envelope**

$$\dot{q}'_{45cond} = 2\pi k_{45}(T_4 - T_5)/\ln(D_5/D_4)$$

 $k_{45}$  = glass envelope thermal conductance at the average glass temperature ( $T_4 + T_5$ )/2 (W/m-K)


- $T_4$  = glass inside surface temperature (K)
- $T_5$  = glass outside surface temperature (K)
- $D_4$  = glass inside diameter (m)
- $D_5$  = glass outside diameter (m)





#### Heat Transfer from the Glass Envelope to the Atmosphere

- There are two possible mechanisms for heat transfer:
  - Convection
  - Radiation







# Heat Transfer from the Glass Envelope to the Atmosphere CONVECTION

$$\dot{q}'_{56conv} = h_{56} \pi D_5 (T_5 - T_6)$$
$$h_{56} = \frac{k_{56}}{D_5} N u_{D5}$$

- $T_5$  = glass envelope outer surface temperature (°C)
- $T_6$  = ambient temperature (°C)
- $h_{56}$  = convection heat transfer coefficient for air at (T<sub>5</sub> T<sub>6</sub>)/2 (W/m<sup>2</sup>-K)
  - $k_{56}$  = thermal conductance of air at  $(T_5 T_6)/2$  (W/m-K)
  - $D_5$  = glass envelope outer diameter (m)
- $Nu_{D5}$  = average Nusselt number based on the glass envelope outer diameter





# Heat Transfer from the Glass Envelope to the Atmosphere CONVECTION

$$\overline{N}u_{D5} = C \operatorname{Re}_{D5}^{m} \operatorname{Pr}_{6}^{n} \left(\frac{\operatorname{Pr}_{6}}{\operatorname{Pr}_{5}}\right)^{1/4}$$

n = 0.37, for Pr <=10 n = 0.36, for Pr >10

| Re <sub>D</sub> | С     | m   |
|-----------------|-------|-----|
| 1-40            | 0.75  | 0.4 |
| 40-1000         | 0.51  | 0.5 |
| 1000-200000     | 0.26  | 0.6 |
| 200000-1000000  | 0.076 | 0.7 |

- Valid for 0.7 < Pr<sub>6</sub> < 500.
- All fluid properties are evaluated at atmospheric temperature, T<sub>6</sub>, except Pr<sub>5</sub>.





# Heat Transfer from the Glass Envelope to the Atmosphere RADIATION

$$\dot{q}'_{57rad} = \sigma D_5 \pi \varepsilon_5 \left( T_5^4 - T_7^4 \right)$$

- $\sigma$  = Stefan-Boltzmann constant (5.670E-8) (W/m<sup>2</sup>-K<sup>4</sup>)
- $D_5$  = glass envelope outer diameter (m)
- $\epsilon_5$  = emissivity of the glass envelope outer surface
- $T_5$  = glass envelope outer surface temperature (K)
- $T_7$  = effective sky temperature (K)
- Sky temperature depends on many variables.
- A simplified model is to assume that it is less than ambient temperature by 8°C.





# **OPTICAL EFFICIENCY OF THE PTC**

- Optical efficiency is defined as the ratio of irradiation incident on the outside of the receiver to the irradiation incident on the collector (mirrors).
- There are many sources of "error" that cause the optical efficiency to be less than 1.





## SOURCES OF LOSSES IN OPTICAL EFFICIENCY

| $\epsilon'_1 = \text{HCE Shadowing (bellows, shielding, supports)}$ | 0.974                     |  |
|---------------------------------------------------------------------|---------------------------|--|
| $\epsilon'_2 = \text{Tracking Error}$                               | 0.994                     |  |
| $\epsilon'_3$ = Geometry Error (mirror alignment)                   | 0.98                      |  |
| $\rho_{cl} = Clean Mirror Reflectance$                              | 0.935                     |  |
| $\epsilon'_4 = \text{Dirt on Mirrors}^*$                            | reflectivity/ $\rho_{cl}$ |  |
| $\epsilon'_5 = \text{Dirt on HCE}$                                  | $(1 + \epsilon'_4)/2$     |  |
| $\epsilon'_6 = Unaccounted$                                         | 0.96                      |  |
| * reflectivity is a user input (typically between 0.88 and 0.93)    |                           |  |

- Values in the table are typical values.
- They can vary from one PTC model to another and from one time to another.
- $[\varepsilon'_1 \varepsilon'_2 \varepsilon'_3 \varepsilon'_4 \varepsilon'_5 \varepsilon'_6 \rho_{cl}]$  is the optical efficiency.
- The optical efficiency is denoted by  $\eta_{\rm opt}$



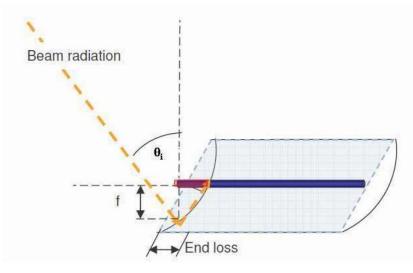


## **Solar Irradiation Absorption in the Absorber**

$$\dot{q}_{3SolAbs} = G_{ND} [\varepsilon_1' \varepsilon_2' \varepsilon_3' \varepsilon_4' \varepsilon_5' \varepsilon_6' \rho_{cl}] K \tau_{env} \alpha_{abs}$$
**OR**

$$\dot{q}_{3SolAbs} = G_{ND} \eta_{opt} K \tau_{env} \alpha_{abs}$$

Where,


- *K* is the incidence angle modifier (explained in next slide)
- $\tau_{env}$  is the glass tube's transmittance.
- $\alpha_{abs}$  is the absorber tube's absorptance.

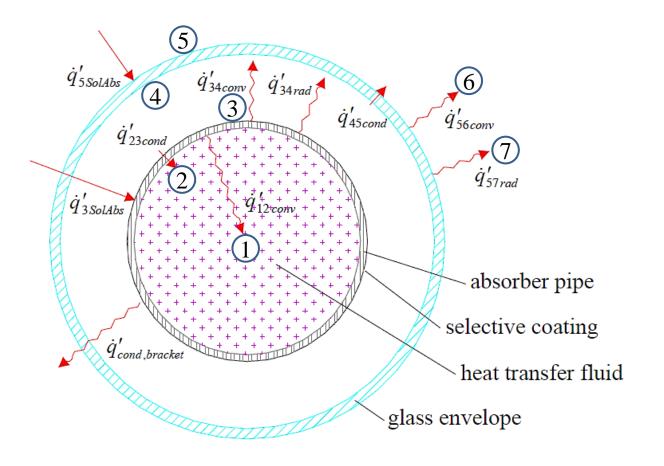




## Incidence Angle Modifier (K)

- *K* accounts for cases when the incidence angle is not 0°.
- It also accounts for the "end loss".
- *K* depends on the exact geometry of the PTC.
- The following is an example of the formula for calculating *K*:

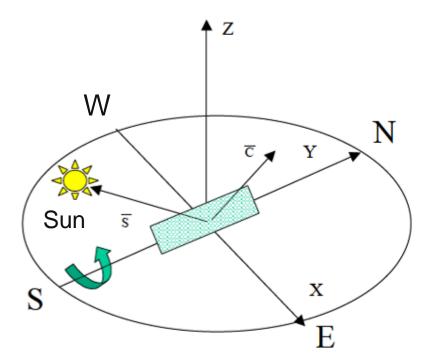



 $K = \cos(\theta) + 0.000884\theta - 0.00005369\theta^2$ 





### **Solar Irradiation Absorption in the Glass Envelope**


 $\dot{q}_{5SolAbs} = G_{ND} [\varepsilon_1' \varepsilon_2' \varepsilon_3' \varepsilon_4' \varepsilon_5' \varepsilon_6' \rho_{cl}] K \alpha_{env}$ 







- The tilt angle  $(\alpha_{PTC})$  varies with the time of the day since PTCs track the sun continuously.
- For PTC systems with a northsouth tracking axis, the tilt angle can be given by:



 $\sin \alpha_{PTC} = \cos \beta \, \cos |\phi - 90| \, if \, h \le 0$ 

 $\sin \alpha_{PTC} = \cos \beta \, \cos |\phi - 270| \, if \, h > 0$