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ABSTRACT 
 
The paper presents a novel approach to increase the 
performance and/or throughput of iterative belief 
propagation (BP) decoding of low density parity check 
(LDPC) codes. The proposed approach is based on 
utilizing the decoder idle time by introducing two queue 
s: one at the decoder input and the other at the decoder 
output. At the presence of an input queue, the decoder 
runs extra iterations beyond the maximum allowable 
iterations as long as the input queue is not full. The 
function of the output queue is to preserve decoder 
timing, guaranteeing frames to be decoded within a fixed 
time similar to a conventional LDPC decoder, making it 
practical for real time applications. 
Simulation results for a rate ½ (1024,512) progressive 
edge-growth (PEG) LDPC code show that the proposed 
approach can increase the decoder performance up to 
69% keeping the same throughput, or doubling the 
throughput while keeping performance almost the same. 
 

Index Terms— LDPC codes, Belief Propagation 
iterative decoding, Error correction coding.  

 
1. INTRODUCTION 

 
One of the leading families of error-correcting codes is 
known as Low Density Parity Check (LDPC) codes, 
which were first introduced by Gallager in [1].  LDPC 
codes have been found to rival other state-of-the-art 
coding families (such as Turbo Codes), and demonstrate 
performance that can asymptotically achieve the 
information-theoretic limits, while at the same time 
having the distinct advantage of low-complexity, near-
optimal soft message-passing iterative decoding based on 
the Belief Propagation (BP) algorithm (also known as  
the Sum-Product algorithm) [2,3].   
 
One of the advantageous features of LDPC codes is that 
error detection is always achieved as a by-product of the 
BP decoding, without the need of extra cyclic 
redundancy check-CRC codes (unlike other FEC 
families, like turbo, for example).  This is because 
decoder failures, after reaching a maximum pre-set 
number of iterations (usually in the range of 100), are 
always known. 

The selection of the value of the decoder maximum 
iterations has a direct effect on both decoder error 
correction performance and decoder throughput. 
Increasing maximum iterations increases error correction 
performance but decreases throughput, and vice versa. 
Figure 1 shows an example of a PEG (1024,512) decoded 
with 64 maximum iterations. It can be seen that at the 
point 2.5dB, decoder is active 10% of the time and 
becomes idle waiting for the next frame for 90% of the 
time. In other words, at point 2.5dB, on the overage, 
frames are decoded within 6.4 iterations out of the 
maximum 64 iterations.   
In this research we utilize the inherent decoder feature of 
error detection to allow for decoding iterations beyond 
the maximum iterations without affecting decoder 
throughput. We accomplish this target by introducing two 
queues: one at the decoder input and one at the decoder 
output.  
Several previous works implemented similar technique to 
increase LDPC decoder performance. In [4], the authors 
showed that adding additional buffering at the input of an 
iterative decoder increased the throughput of the decoder. 
They implemented a buffer at the input of a turbo 
decoder with additional cyclic redundancy check (CRC) 
as a stopping criterion. In [5], an input buffer is used at 
the input of an LDPC decoder to decrease the overall 
complexity of the decoding circuit. In [7], they did a 
similar approach as in [4] but for an LDPC decoder. They 
did the analysis and simulation using the decoder for the 
next generation satellite digital video broadcasting 
(DVB-S2) as a case study. 
According to our knowledge, all previous works are 
based on implementing input buffers (queue) to increase 
the throughput or decrease the decoder complexity. Their 
approach suffers from a major problem: the big variance 
of decoding time, which makes their approach not 
practical, especially for real time applications, such as 
DVB-S2.   
In this paper, we could solve this problem by introducing 
another queue, same size as the input queue, at the output 
of the LDPC decoder. Given a conventional LDPC 
decoder with a pre-set number of maximum decoding 
iterations, using input/output queues, frames are ensured 
to be decoded within the maximum decoding iterations.  
It should be also mentioned that although the added 
output queue has same size as the input queue, its cost is 
less than the input queue. The reason is in the size of 
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elements of each queue: input queue elements are 
numbers (integer or floating-point), while output queue 
elements are binary numbers. For example, for a 6-bit 
quantized LDPC decoder, output queue has a cost equal 
to 1/6 of the input queue.  
 
The rest of the paper is organized as follows. First, in 
Section 2, a brief review of LDPC codes and their 
iterative decoding are introduced. In Section 3, we 
describe the proposed decoder. Experimental results are 
given in Section 4, and final conclusions in Section 5. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: Example illustrates decoder active time percentage 
for a PEG code  (1024,512) with 64 maximum iterations 

 
 

2. OVERVIEW OF LDPC CODES 
 
LDPC codes are a class of linear block codes that use a 
sparse, random-like parity-check matrix [1, 2]. LDPC 
codes can also be represented by bi-partite factor graphs 
having two types of nodes:  variable bit nodes and check 
nodes, interconnected by edges whenever a given 
information bit appears in the parity check equation of 
the corresponding check bit, see figure 2. The iterative 
message-passing belief propagation algorithm [2,3] is 
used for decoding LDPC codes, and is shown to achieve 
optimum performance when the underlying code graph is 
cycle-free.  
In this section, we review the belief propagation (BP) 
algorithm used for decoding LDPC codes presented in 
Gallager's work [1]. It is also called sum-product 
algorithm (SPA). Assume a binary (N,K) LDPC code is 
described by a sparse parity check matrix (called H 
matrix) of size M N× , where M  is the number of 
parity-checks corresponding to the parity-check nodes in 
a bipartite graph, and N is the number of variable nodes 
corresponding to the encoded symbols.  
Before discussing the BP algorithm, we introduce some 
terms that will be used throughout the discussion of the 
algorithm [8]: 
• For the thj row in an H matrix, the set of column 

locations of the 1’s is given by { : 1}j jiR i h= = . The 

set of column locations of the 1’s, excluding location 
i is given by \ { : 1}j i jiR i h ′′= = \ {i}.  

• For the thi  column in an H matrix, the set of row 
locations of the 1’s is given by { : 1}i jic j h= = . The 

set of row locations of the 1’s, excluding the location 
j is given by \ { : 1}i j j ic j h ′′= = \ {j} 

• ( )ijq b : Message (extrinsic information) to be passed 

from variable node iv  to check node jf   regarding 

the probability that ic b= , {0,1}b∈ , as shown in 
Figure 2(a). It equals the probability that ic b= given 
extrinsic information from all check nodes, except 
node jf . 

• ( )jir b : Message to be passed from check node jf  to 

variable node iv , which is the probability that the 
thj check equation is satisfied given bit ic b=  and 

the other bits have separable (independent) 
distribution given by { }ij j jq ′ ′≠ , as shown in Figure 

2(b). 
• ( )iQ b = the probability that ic b= , {0,1}b∈  
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The BP algorithm involves one initialization step and 
three iterative steps as shown below: 
 
Initialization step:  Set the initial value of each variable 
node signal as follows: 2( ) ( ) 2 /ij i iL q L c y σ≡ = , where 

2σ is the variance of noise in the AWGN channel. 
 
Iterative steps: The three iterative steps are as follows: 
 
(I) Update check nodes as follows: 

jf  

iv  

( )ijq b  

Figure 2  (a) Variable-to-check message, (b) Check-to-
variable message. 

iv  

( )jir b
jf  

(a) (b) 
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(II) Update variable nodes as follows: 

\

( ) ( ) ( )
i j

ij i j i
j C

L q L c L r ′
′∈

= + ∑  (2) 

 
(III) Compute estimated variable nodes as follows: 

( ) ( ) ( )
i

i i ji
j C

L Q L c L r
∈

= + ∑  (3) 

 
Based on ( )iL Q , the estimated value of the received bit 
( îc ) is given by: 

1 ( ) 0
ˆ

0
i

i
if L Q

c
else

<⎧
= ⎨
⎩

 

Stopping Criterion: The decoded vector ĉ  is used to 
check if ˆH c  is zero, in which case it is declared as a 
valid codeword. If not, iterative decoding continues until 
it is eventually successful, or a preset number of 
maximum iterations (m) is reached. The check equation 

ˆH c  has a simple implementation in hardware, each 
check node perform a logical XOR function on the 
estimated values of the connected variable nodes, for a 
check node j :  

ˆ
j

j i
i R

check c
∈

= ⊕∑  

Then a logical OR function is performed on the results of 
all check nodes ( jcheck ) to get the final result ˆH c .  
 

3. DECODER DESCRIPTION 
 
Assume we are given a conventional LDPC decoder with 
maximum decoding iterations (m). Frames arrive at the 
input of the decoder at a fixed frame rate (FR). Frames 
are dispatched from the decoder output at the same rate 
(FR). Usually, the maximum decoding iterations value 
(m) is chosen so that the time needed for m iterations 
equals the frame inter-arrival time, which is 1/ FR .  
Our proposed idea is to improve the error correction 
performance of the decoder and keep frame output 
throughput at the same fixed rate FR. This is 
accomplished by introducing two queues, both of size q: 
one queue at the input of the LDPC decoder and the other 
at the output of the decoder, as shown in Figure 3.  
Frames are received from channel at a fixed rate (FR) and 
stored in the input queue. The LDPC decoder receives a 
frame from the input queue, performs decoding iterations 

and then stores the decoded frame at the output queue. 
Frames are dispatched from the output queue at the same 
fixed rate (FR) in which frames are received at the input 
queue. 
The decoder runs over two phases:  Setup  phase, in 
which output queue is being filled with decoded frames, 
and normal phase in which decoded frames are 
dispatched from the output queue at a fixed rate (FR). 
Following is a description for each phase: 
Setup phase: when the decoding process starts running, 
both input and output queues are empty. As soon as the 
input queue receives a frame, it is dispatched to the 
LDPC decoder which decodes it and sends the decoded 
frame to the output queue. This phase continues until the 
decoder finishes from decoding (q+1) frames, q frames at 
the output queue and one frame at the decoder. Two main 
properties of this phase are: (1) Maximum decoding 
iterations is set the conventional value (m). (2) No frames 
are dispatched from the output queue. At the end of this 
phase, state of the queues looks like the one shown in 
figure 4(a). 
This phase  takes a starting latency of q frames  for filling 
the output queue plus one frame in the decoder which is a 
total of  (q+1)/FR sec. Comparing this latency with  the 
conventional decoder latency of 1/FR, this is a 
disadvantage for our proposal, but is acceptable in most 
applications such as satellite broadcasting.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3: LDPC decoder with the input and output queues 
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Normal phase: In this phase, frames are dispatched from 
the output queue at a fixed rate FR. Since the input queue 
arrival rate has the same fixed rate FR as the output 
queue departure, the total frames in the system (decoder 
and queues) in any time is constant and equal to  q+1 
frames. At any time, there is one frame in the decoder 
(either being decoded or finished from decoding) and q 
frames distributed between input and output queues. 
Because the average number of decoding iterations 
required per a frame is less than the conventional 
maximum iterations (m), most of the time the state of 
input/output queues is: input queue is empty and output 
queue is full, as shown in figure 4(a). When the decoder 
is in this state, an arrived new frame can use m iterations 
(the conventional value) plus extra iterations until the 
input queue becomes full. Since time for filling input 
queue is equal to the time for m q×  iterations, the 
maximum possible iterations a frame can use is given by:  
m m q+ ×  iterations. When a frame consumes iterations 
more than m, received frames are stored in the input 
queue, and the input queue starts growing at the same 
rate RF as the output queue is decaying, see figure 4(b). 
In this state, the maximum allowed decoding iterations 
for a given frame is given by (1 )m q n× + − , where n is 
the number of frames in the input queue just after the 
start of frame decoding.  
The worst case is when the input queue is full (saturated), 
as shown in figure 4(c). In this state, the maximum 
possible decoding iterations is equal to the conventional 
value m. 
 

 
 
 
 
 

 
 

 
 
 
 

 
 

 
 
 
 
 
 
 
 
 

4. EXPERIMENTAL RESULTS  
 
In order to verify the effectiveness of the proposed idea, 
extensive simulations have been performed. Since 
simulation of LDPC is time consuming, especially at high 
SNR, a parallel computing simulation platform was 

developed to run the LDPC simulations on 170 
processing nodes on a departmental LAN network.  
First, we studied the effect of the maximum iterations 
value (m) on the performance of an LDPC decoder.  We 
did a simulation for a PEG matrix [6] of size (1024, 512) 
using different maximum decoding iterations m, 
specifically: 16, 32, 64, 128, 256, 512 and 1024 
iterations. The performance results are shown in figure 5. 
It is clear from the figure that the performance difference 
between two values of m is large when m is small. For 
example, the performance difference between m=16 and 
m=32 is much higher than the performance difference 
between m=512 and m=1024. Another important 
observation is that increasing the value of m has a more 
significant effect on the performance as the value of SNR 
increases. On the other hand, as SNR increases, average 
decoding iterations decreases, this increases decoder idle 
time and allows for efficient utilization of the proposed 
input/output queues scheme. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   

   Figure 5: Effect of maximum iterations (M) on LDPC  
decoder performance  

 
Figure 6 shows the effect of the proposed input/output 
queues scheme on LDPC decoder performance. Focusing 
on the two curves: m=64 without queues (conventional 
decoder) and m=64 with queue size of 1, it is obvious 
that the performance is increased remarkably without any 
effect on the throughput. At SNR=3dB, the conventional 
FER is decrease by 69% when using input/output queues 
of size 1 each.  
The second (m=128, no queues) and third (m=64, q=1) 
curves in Figure 6 indicate that we could implement the 
proposed input/output queues to increase the LDPC 
decoder throughput keeping almost the same error 
correcting performance.  
Finally, Figure 7 illustrates the effect of increasing the 
queues size on the performance of the LDPC decoder. It 
is obvious from the figure that the decoder performance 
increases as the size of queues increases. However, 
increasing the queues size has two negative impacts: 
increasing hardware cost and increasing initial latency 
time. A good balance in the choice of the values for m 
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Figure 4: Three different states of input/output queues 
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and q could provide the best trade-off between cost and 
performance. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

   Figure 6: Effect of the proposed input/output queue scheme 
on LDPC decoder performance 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  Figure 7:  LDPC decoder performance using different 
input/output queues sizes 

 
 

5. CONCLUSION 
 
In this paper, we introduced the concept of input/output 
queues to increase the performance and/or throughput of 
an LDPC decoder. Unlike previous approaches, our 
proposed idea ensures that the frames are decoded within 
a maximum time interval, similar to the conventional 
decoders. This property makes our proposal practical for 
real time applications, such as digital video broadcasting. 
However, our proposal requires an initial latency time 
proportional to the input/output queues size, which is 
acceptable in most practical applications. 
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